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Abstract

Heavy-quark e�ective theory (HQET) is applied to lattice QCD with Wil-

son fermions at �xed lattice spacing a. This description is possible because

heavy-quark symmetries are respected. It is desirable because the ultraviolet

cuto� 1=a in current numerical work and the heavy-quark mass mQ are com-

parable. E�ects of both short distances, a and 1=mQ, are captured fully into

coe�cient functions, which multiply the operators of the usual HQET. Stan-

dard tools of HQET are used to develop heavy-quark expansions of lattice

observables and, thus, to propagate heavy-quark discretization errors. Three

explicit examples are given, namely the mass, decay constant, and semilep-

tonic form factors of heavy-light mesons.
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I. INTRODUCTION

One of the most vital parts of high-energy physics is the study of heavy quarks. Several

large experimental data sets of hadrons with beauty or charm are available now, or will be

soon. These data are valuable, because the decay properties of these hadrons depend on

poorly known elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. A broad range

of measurements can be used to determine the CKM matrix with many cross checks and,

thus, to test the avor structure of the standard model, including the origin of CP violation.

In this enterprise numerical lattice QCD plays the role of providing hadronic matrix

elements, ideally with controllable, transparent uncertainties. The two sources of uncertainty

that attract the greatest concern are discretization e�ects and the quenched approximation,

in which the feedback of (light) quark loops on the gluons is omitted. Both can be eliminated

with ever larger computing resources. E�ects of the lattice discretization also can be studied

theoretically. They appear at short distances, so they can be disentangled from long-distance

physics with �eld theoretic methods. This paper uses e�ective �eld theory to separate the

short-distance scales of the lattice spacing and the heavy quark mass from the long-distance

QCD scale. It is an extension of work with El-Khadra and Mackenzie [1] on massive fermions

in lattice gauge theory. The e�ective �eld theory approach yields several concrete results,

which illustrate strategies for reducing cuto� e�ects of heavy quarks. Numerical calculations

may then focus computer resources on incorporating the light quark loops.

The idea of using e�ective �eld theory to study cuto� e�ects goes back to Symanzik [2].

For any lattice �eld theory his idea was to introduce a local e�ective Lagrangian, which is the

Lagrangian of the corresponding continuum �eld theory, augmented with higher-dimension

operators. Coe�cients of the operators depend on the underlying lattice action, and their

dimensions are balanced by powers of the lattice spacing a, which is the only short distance

in Symanzik's analysis. For small enough a one should be able to treat the higher-dimension

terms as perturbations and express observables of the lattice theory as an expansion in terms

of continuum observables. For a pedagogical introduction, see Ref. [3].

The aim of this paper is to understand numerical data generated using lattice actions

with Wilson fermions [4,5] for the heavy quarks.1 Many papers, starting with the work of

Gavela et al. [6] and Bernard et al. [7], have attempted to calculate properties of heavy-

quark systems in this way. In practice, the bottom quark's mass in lattice units is large,

mba � 1, and even the charmed quark's mass is not especially small, mca � 1
3
. Thus, these

calculations are hardly in the asymptotic regimemQa! 0 (mQ �xed) for which these actions

were originally devised. In particular, any expansion in small mQa, as is usually assumed

in analyses based on Symanzik's work, fails. This does not imply that heavy-quark cuto�

e�ects in these calculations are large, but it does mean that a di�erent analysis is needed.

The heavy quark masses are larger than �QCD, so they introduce additional short-distance

scales. One is free to seek an e�ective theory that lumps the e�ects of all short distances|the

1In this paper the term \Wilson fermions" encompasses any action with Wilson's solution of the

doubling problem [4]. These include the Sheikholeslami-Wohlert (\clover") action [5], the actions

of Ref. [1], and|of course|the Wilson action.
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lattice spacing and the heavy quarks' Compton wavelengths|into coe�cients. This e�ective

theory does not have to be continuumQCD. The crucial observation [1] is that lattice actions

with Wilson fermions satisfy the same heavy-quark symmetries [8] as continuum QCD. For

heavy-light systems, therefore, a version of the heavy-quark e�ective theory (HQET) is

appropriate. Similarly, for quarkonia the same Lagrangian applies, but with the power-

counting of non-relativistic QCD (NRQCD). The operators in such a description of lattice

gauge theory are the same as in the usual NRQCD [9{11] or HQET [12{15] descriptions

of continuum QCD, but the coe�cients di�er because the lattice modi�es the dynamics at

short distances.

This paper focuses on hadrons with one heavy quark and, consequently, on HQET. It

uses tools of the usual HQET to derive formulae of the form

Blat = z1(mQa)B1(�QCDa) +
1

m2(mQa)
B0
1
(�QCDa) + � � � ; (1.1)

whereBlat is a physical observable calculated in lattice gauge theory. The quantities z1(mQa)

and 1=m2(mQa) are short-distance coe�cients of mass dimension 0 and �1, respectively.2
They do not depend on the light degrees of freedom. The quantities B1 and B 0

1
describe

the long-distance physics. They are matrix elements in the in�nite-mass limit and do not

depend on mQ. Thus, the heavy-quark mass is entirely isolated into the coe�cients.

The logic to derive formulae like Eq. (1.1) parallels that of the standard HQET. In both

cases the deviations from the in�nite-mass limit are expressed as a series fo small corrections.

Each term consists of a short-distance coe�cient multiplying a long-distance matrix element

of the in�nite-mass limit. From this structure a simple picture of cuto� e�ects emerges. The

heavy-quark cuto� e�ects lie in the di�erence between the short-distance coe�cient functions

and their values in continuum QCD. On the other hand, matrix elements of the in�nite-

mass limit, such as B1 and B0
1
, su�er from discretization e�ects only of the light degrees

of freedom.

This paper is organized as follows: Sec. II clari�es the non-relativistic interpretation of

Wilson fermions introduced in Ref. [1], by giving more direct, though also more abstract,

reasoning to relate lattice gauge theory to HQET. Section III establishes some general no-

tation and introduces the HQET Lagrangian. As in Sec. II the emphasis is on symmetries.

The leading, heavy-quark symmetric, e�ective Lagrangian is shown to be the same for lat-

tice gauge theory as for continuum QCD. This static Lagrangian is the foundation of the

heavy-quark expansion, so some of its properties are recalled in Sec. IV. The next task is to

propagate deviations from the static limit to observables, so Sec. V develops a suitable form

of perturbation theory. Applications of the formalism are in Sec. VI{VIII. Section VI works

out the heavy-quark expansion for hadron masses to second order. Semileptonic form fac-

tors, at the so-called zero-recoil point, are addressed in Sec. VII. As with continuum QCD,

the �rst order vanishes. The technical details of the second order are considerable and ap-

pear in Appendix A, correcting some minor errors in the literature. Section VIII derives

2Here mQ the heavy quark mass in some scheme, for example the bare mass. When there is more

than one heavy quark in the problem, Eq. (1.1) is schematic, and the coe�cients depend on all

heavy quark masses.
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the �rst-order expansion for decay constants. In all three cases the analysis follows work on

the usual HQET, but keeping careful track of the HQET coe�cients. Some implications of

these concrete results are discussed in Sec. IX.

II. HQET FOR LATTICE QCD

In this section lattice gauge theory with a general action for Wilson fermions is related

to HQET. A derivation starting from the path integral of lattice QCD and making �eld

rede�nitions has been given previously [1]. That procedure is analogous to derivations of

HQET from the path integral of continuum QCD [18{20], and it yields the coe�cients at

the tree level. Reference [1] used heavy-quark symmetry only to show that the approach to

the in�nite-mass limit is smooth and stable in the presence of radiative corrections. Here the

argument is reversed: owing to heavy-quark symmetry, there must be a version of HQET

describing lattice QCD. This is so whenever momentum transfers are much smaller than mQ.

Whether mQa � 1, mQa � 1, or mQa � 1, the reasoning is the same. The concepts are

spelled out in this section, and the mathematical formalism is developed in Sec. III.

The action for Wilson fermions [4] (including improvements [5,1] with Wilson's solution

of the doubling problem) can be written

S =
X
x

� x x � �
X
x;y

� xMxy y; (2.1)

where x and y run over all lattice sites and Mxy has support only for y near x. To maintain

gauge invarianceMxy includes parallel transport along some path from x to y. The hopping

parameter � controls the fermion's movement through the lattice, and small � corresponds

to large mQa. For �! 0 any action of the form (2.1) clearly has the heavy-quark spin and,

for more than one quark, avor symmetries of continuum QCD in the heavy-quark limit [8].

To sharpen this point, consider for now �xed lattice spacing a. Expanding the quark

propagator

S(x� z) = T (x) � (z) (2.2)

in small �, gives a leading term which is the shortest and straightest path permitted by

iteratingMxy. If x = z this is nothing but the propagator of the static theory [12]. Thus, the

heavy-quark limit of lattice QCD is the static theory, plus small avor- and spin-dependent

contributions. Therefore, one should look for a heavy-quark e�ective theory to describe

processes with all momentum exchanges small compared to mQ.

Because the symmetries are the same as in the continuum, the operators of this HQET are

the same as those of the usual HQET describing continuumQCD. To de�ne the operators the

main issue is to regulate divergences. There is no need choose the same ultraviolet regulator

for the e�ective theory as for the underlying theory. One is free to regulate the ultraviolet

with, say, dimensional regularization and either a physical or a minimal renormalization

scheme. On the other hand, because the e�ective and underlying theories are supposed to

describe the same long-distance physics, the same infrared regulator, when needed, should

be chosen.
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Because the details of the short-distance dynamics are those of the lattice theory the

coe�cient functions of HQET must be modi�ed. They can be calculated by computing the

observables in lattice QCD and the modi�ed HQET and matching. The lattice breaks some

rotational and translational symmetries, so coe�cients of corresponding operators need not

vanish, as they would in the usual HQET. The explicit form of the coe�cients is not needed

in this paper, but it is helpful to have an idea how they might be calculated. With Feynman

diagrams, for example, one would expand lattice amplitudes around the static limit in small

momentum transfers, keeping the full dependence on mQa.

In summary, at any given lattice spacing a observables of the action (2.1) can be described

with the usual operators of HQET but modi�ed coe�cients. As a varies the short-distance

properties change, and so the coe�cients must change to compensate. Eventually, when

a ! 0, lattice QCD becomes (indeed, de�nes) continuum QCD, so the coe�cients of the

modi�ed HQET smoothly turn into those of the usual HQET.

In Eq. (2.1) the hopping matrixMxy is not speci�ed in detail. In general it contains many

free couplings, which are irrelevant in the sense of the renormalization group. In the usual

improvement program [16] they are chosen to accelerate the approach to the continuum limit.

In the HQET analysis advocated here, a similar principle holds. The irrelevant couplings of

the lattice action alter the short-distance coe�cients of the modi�ed HQET. Thus, they can

be adjusted so that the HQET expansion of lattice QCD systematically reproduces more

and more of the HQET expansion of continuum QCD.

For a generic lattice action, the heavy-quark symmetries hold only in the rest frame. On

a super�cial glance this is a drawback, because much of the power of HQET comes from

boosting heavy-light hadrons to arbitrary frames. On a second glance, it may be a blessing in

disguise. By combining heavy-quark symmetry, Lorentz covariance, and reparametrization

invariance [17], it may be possible to develop a non-perturbative improvement program.

III. NOTATION AND FORMALISM

This section reviews the main ingredients of HQET in a notation well-suited to Euclidean

space-time. The details are slanted to Euclidean space-time because the aim of the paper is

to understand the output of Monte Carlo calculations of lattice QCD. All results, however,

are for matrix elements de�ned at a �xed (Euclidean) time, so they apply equally well to

the Minkowski theory. Indeed, with the conventions introduced here, the formulae in this

paper hold for both kinds of time, unless speci�cally noted.

The Euclidean action can be written S = � R d4xL, where L is the Lagrangian, and

the weight factor in the functional integral is then e�S . The metric is ���, Greek indices

run from 1 to 4, and Dirac matrices satisfy f�; �g = 2���. A convenient basis is given in

Ref. [1], in particular

4 =

 
1 0

0 �1

!
: (3.1)

As usual, we take real (Minkowski) time to be t = x0. Then Euclidean time x4 = ix0, and

the general rule relating the fourth component to the zeroth component of a four-vector q is

5



q4 = iq0: (3.2)

Because the spatial components are the same, it is convenient to put all modi�cations into

the time component. Therefore, this paper uses the metric g�� = diag(�1; 1; 1; 1), where
Greek indices run from 0 to 3, so q0 = �q0 and q2 = �(q0)2 + q

2. And the Dirac matrices

0 = �i4 and j di�er by a factor of �i from those of the most common Minkowski

convention.

The four-volume element is de�ned to be

d4x := dx1dx2dx3dx4 = i dx0dx1dx2dx3: (3.3)

The factor of i in Eq. (3.3) is the most unusual convention introduced here, but it allows

many formulae given below look the same in both Euclidean and Minkowski space-time. For

example the weight factor of the path integral is always e
R
d4xL.

The foregoing conventions can be used in any �eld theory. In HQET one introduces a

velocity v, with v2 = �1. Although heavy-quark symmetry of lattice gauge theory is only

guaranteed in the rest frame v = 0, it is convenient to keep v arbitrary. The projectors

P�(v) =
1
2
(1 � i=v) (3.4)

project onto \upper" and \lower" components of spinors. For any vector q the components

orthogonal to v,

q�
?
= q� + v�v � q; (3.5)

play a special role. In the rest frame they are the spatial directions. It is also convenient to

introduce

��� = ��� + v�v� (3.6)

to project out orthogonal components of a tensor, e.g., q�
?
= ���q

�.

In HQET heavy quarks are represented by a heavy-quark �eld h(+)v satisfying

h(+)v = P+(v)h
(+)
v : (3.7)

The anti-quarks are represented by h(�)v = P�(v)h
(�)
v . As in the usual HQET one can either

consider the anti-quarks to be decoupled [18,19] or integrated out [20]. But in this paper,

having shown that the heavy-quark symmetries hold in lattice QCD, the e�ective Lagrangian

is developed principally on the basis of symmetry. The heavy-quark Lagrangian is written

LHQET = L(0) + L(1) + L(2) + � � � ; (3.8)

where the leading term is

L(0) = �h(+)v (iv �D �m1)h
(+)
v : (3.9)

A non-zero rest mass m1 is introduced to describe the exponential fall-o� of Euclidean Green

functions, e�Ejx4j with energies E � m1. The further interactions L(s) contain operators of
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dimension 4+ s. By dimensional analysis their coe�cients, of dimension �s, contain powers
of the short-distance scales 1=mQ or a.

The Lagrangian L(0) is the unique scalar of dimension four satisfying the Isgur-Wise

symmetries [8]. The heavy-quark spin symmetry is manifest, but with m1 6= 0 the avor

symmetry is not. It is, however, there. In Eq. (3.9) let the �eld h(+)v to be a column vector

for all the avors of velocity v, and let m1 denote a mass matrix. For example, for two

avors

m1 =

 
m1c 0

0 m1b

!
: (3.10)

Let � = (m1c �m1b)v � x and consider the generators

� 1 =
i

2

 
0 ei�

e�i� 0

!
; � 2 =

i

2

 
0 �iei�

ie�i� 0

!
; � 3 =

i

2

 
1 0

0 �1

!
; (3.11)

satisfying the SU(2) algebra [� d; � e] = "dfe� f . Then the avor symmetry is

h(+)v 7! e�
a!ah(+)v ; �h(+)v 7! �h(+)v e��

a!a: (3.12)

The symbol D� = D� � im1v
�, which was introduced in Ref. [21], satis�es [D�; � d] = 0 and

is, thus, trivially covariant under the transformation (3.12). Therefore, avor-symmetric

operators take the form

O�1����n
� = �h(+)v �D�1 � � � D�nh(+)v ; (3.13)

where � = P+(v)�P+(v). Spin-symmetric operators have � = 1 (or =v, since =vh(+)v = ih(+)v ).

The only avor- and spin-symmetric scalar at dimension four is �h(+)v iv �Dh(+)v , which is L(0).

Thus, the symmetries of HQET with non-zero rest masses are the same as without.

In the following anti-quarks are not considered further, so from now on the heavy quark

�eld is written hv instead of h(+)v .

To describe deviations from the symmetry limit, one introduces the higher-dimension

interactions L(s), which are built from operators likeO�. These are general enough to include

the gluon �eld strength, because F �� = [D�;D� ] = [D�;D� ]. One may omit operators that

would vanish by the equations of motion of L(0), �iv � Dhv = 0. Such operators make

no net contribution on the HQET mass shell, so they do not appear in on-shell matching

calculations. At dimension �ve there can be two Ds, so

L(1) =
O2

2m2

+
OB

2mB

; (3.14)

where

O2 = �hvD
2
?
hv; (3.15)

OB = �hvs��B
��hv; (3.16)

with s�� = �i���=2 and B�� = ����
�
�F

��. In the rest frame, O2 gives the kinetic energy and

OB the chromomagnetic interaction. At dimension six, with three Ds,
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L(2) =
OD

8m2
D

+
OE

8m2
E

; (3.17)

where

OD = �hv[D
�
?
; iE�]hv; (3.18)

OE = ��hvi���fD�
?
; iE�ghv; (3.19)

with E� = �v�F ��.3 In the rest frame, OD gives the Darwin term and OE the spin-orbit

interaction. The complete list of dimension-six interactions includes four-quark operators,

such as �q�q�hvv�hv, but their coe�cients all vanish at the tree level.

Distinct inverse masses 1=m2, 1=mB, 1=m
2
D, and 1=m2

E are introduced as a notation for

the coe�cients of the modi�ed HQET. One could have equally well written zB=m2 instead

of 1=mB, and so on, but to trace the e�ects of the higher-dimension operators on physical

observables the notation of inverse masses is adequate. The numerical factors and powers

of the inverse masses have been chosen so that all masses become the same in the tree-level

continuum limit. At non-zero lattice spacing and in the presence of radiative corrections,

this is no longer guaranteed.

Concrete expressions for the coe�cients lie beyond the scope of this paper. They depend

on couplings of the lattice action, the velocity v, and the HQET renormalization scheme.

Ideally one would like to devise a non-perturbative scheme for computing the coe�cients,

but so far they have been studied only in perturbation theory. For the lattice actions in

common use, expressions are available at the tree level for m1, 1=m2, and 1=mB [1], and at

the one-loop level for m1 and 1=m2 [22].

Through dimension six the e�ective heavy-quark Lagrangian is rotationally invariant.

Starting with dimension seven, this is no longer the case. For example, consider the term

L(3) = � � �+ a3w4

3X
i=1

�h(+)v D4
i h

(+)
v ; (3.20)

written in the rest frame, v = 0. In the usual HQET, rotational invariance of continuum

QCD implies w4 = 0. With lattice QCD, however, w4 does not vanish unless the lattice

action has been improved accordingly.

To describe electroweak transitions among hadrons containing a single heavy quark,

HQET introduces e�ective operators for the interactions mediating the transitions. Even

in simple cases, such as the vector and axial vector currents examined below, the num-

ber of operators in the heavy-quark expansion is large, and the details of the construction

are di�erent for heavy-to-heavy and heavy-light transitions. The notation for currents is

postponed, therefore, to Secs. VII and VIII.

3The chromoelectric �eld of Ref. [1] is related (in the rest frame) to the one here by E [1] = iE.
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IV. PROPERTIES OF L(0)

The previous two sections establish that the heavy-quark limit of lattice QCD can be

described by the e�ective Lagrangian L(0), with small corrections from

LI = L(1) + L(2) + � � � : (4.1)

This means that the eigenstates of lattice QCD are not very di�erent from the eigenstates

of the quantum �eld theory de�ned by Llight+ L(0), where Llight is the (Symanzik e�ective)

Lagrangian of the light quarks and gluons. Apart from the rest mass m1 and lattice artifacts

of Llight, this is the same lowest-order Lagrangian that is used to describe heavy quarks in

continuum QCD.

To use HQET to connect lattice QCD to continuum QCD, one must understand how the

rest mass and the higher-dimension interactions inuence observables. This section shows

that the eigenstates of the Hamiltonian corresponding to Llight +LHQET are independent of

the rest mass. In particular, the eigenstates of Llight+L(0) do not depend on the heavy avor

at all. The remainder of the paper then develops perturbation theory in LI around these

avor-independent states and studies how the perturbations a�ect several observables.

To show that the rest mass m1 decouples from non-perturbative observables, it is con-

venient to switch to the Hamiltonian formalism of HQET. The canonical conjugate to the

�eld hv is [23]

�v = iv0�hv (4.2)

so at equal times (x0 = z0)

fhv(x); �v(z)g = fhv(x); iv0�hv(z)g = i�(3)(x� z)P+(v): (4.3)

The Hamiltonian H =
R
d3xH has the density

H = Hlight +H(0) �LI ; (4.4)

including a term for the light degrees of freedom. The leading heavy-quark Hamiltonian

density

H(0) = �v@0hv � L(0) (4.5)

= m1
�hvhv + iv0�hvA

0hv � i�hvv �Dhv: (4.6)

From Eq. (4.3) one can see that
R
d3x �hvhv commutes with all other terms in H, including

with Hlight and LI =
R
d3xLI . Thus, the eigenstates of H are independent of m1. This

result is well known in other approaches to the heavy-quark limit [10,24], but the general

proof within HQET does not seem to be widely appreciated.4

4In speci�c examples, a small rest mass, called a residual mass, has been shown to drop out of

the 1=mQ corrections [21].
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This result has a very important consequence. In the HQET description of lattice QCD,

lattice-spacing dependence appears in three places: the rest mass, the short-distance coe�-

cients of LI , and the light degrees of freedom. Because the rest mass drops out of physical

observables, it is acceptable|perhaps even advisable|to tolerate a discrepancy of the rest

mass from the physical mass. Genuine lattice artifacts of the heavy quark stem from de-

viations of the higher -dimension short-distance coe�cients from their continuum limit, and

the couplings of the lattice action should be tuned to minimize them. To make this more

point concrete, the e�ects of LI can be propagated to observables with tools developed for

the usual HQET, as shown in the rest of this paper.

V. PERTURBATION THEORY IN LI

The previous sections have established that lattice gauge theory with heavy quarks can

be described by the e�ective Lagrangian LHQET, whose eigenstates are close to those of

the leading-order theory with Lagrangian L(0). To trace the e�ects of the higher-dimension

operators in LI on observables, they can be treated as perturbations. A formalism for

perturbation theory that exploits heavy-quark symmetry is reviewed in this section.

When proceeding to second order in LI , as in Secs. VI and VII below, one must be careful

to be consistent, for example about the normalization of states. Thus, the discussion starts

(Sec. VA) with a careful setup of time-ordered perturbation theory, to generate heavy-quark

expansions based on the eigenstates of L(0). These states are desirable not only because they

form mass-independent multiplets under heavy-quark symmetry, but also because they are

a�ected by the lattice only through the light degrees of freedom. The formalism makes

no explicit reference to the short-distance coe�cients of the modi�ed HQET, so it applies

equally well to the usual HQET and could be used there as well. The heavy-quark expansion

becomes a series of terms consisting of short-distance coe�cients multiplyingmatrix elements

of time-ordered products in the eigenstates of L(0). Many relations among these matrix

elements follow from heavy-quark symmetry, and Sec. VB reviews the trace formalism, a

technique for deriving such relations.

A. Time-ordered perturbation theory

The perturbative series can be generated by generalizing the interaction picture for vac-

uum expectation values to transition matrix elements. There are three quantum �eld theories

to consider: the underlying theory [here lattice QCD with action (2.1)]; the full HQET with

Lagrangian (3.8); and the leading HQET with Lagrangian (3.9). The states treated here are

hadrons with one heavy quark. The (lattice) QCD state with a heavy quark of avor b (c)

is denoted jBi (jDi). The analogous full HQET state is denoted jBvi, where the subscript
labels the chosen velocity. Finally, the in�nite-mass states are denoted jbvJ ; j�i, where b is
the heavy avor in the HQET with velocity v, J is the hadron's spin, j is the spin of the

light degrees of freedom, and � encompasses all other quantum numbers of the light degrees

of freedom. By heavy-quark avor and spin symmetry, the spatial wave-functions of these

states do not depend on b or J .
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By the Gell-Mann{Low theorem [25] the lowest-lying (i.e., � = 0) spin-J hadron is

related to the corresponding in�nite-mass state by

jBvi = lim
T!1(1�i0+)

Z
1=2
B U(0;�T )jbvJ ; j0i

hbvJ ; j0jU(0;�T )jbvJ ; j0i
; (5.1)

where ZB is a state renormalization factor and

U(t; t0) = T exp
Z t

t0

d4xLI (5.2)

is the familiar interaction-picture propagator. The state renormalization factor has the

usual interpretation of the overlap between the unperturbed and the fully dressed states:

Z
1=2
B = hbvJ ; j0jBvi.
To derive the heavy-quark expansion without ambiguities stemming from the normal-

ization of states, one should set up perturbation theory so that ZB does not appear. For

example, the energy of a fully dressed state can be written [26]

E =
hbvJ ; j0jHjBvi
hbvJ ; j0jBvi

=
hbvJ ; j0jH(0)U(0;�T )jbvJ ; j0i
hbvJ ; j0jU(0;�T )jbvJ ; j0i

; (5.3)

in which the normalization of states clearly cancels. Similarly, matrix elements for avor-

changing transitions can be expressed

hDv0 jT O1 � � �OnjBvi
hDv0 jDv0i1=2 hBvjBvi1=2

=
hcv0J 0; j0jT O1 � � �One

R
d4xLI jbvJ ; j0i

hcv0J 0; j0jT e
R
d4xLI jcv0J 0; j0i1=2 hbvJ ; j0jT e

R
d4xLI jbvJ ; j0i1=2

;

(5.4)

where the upper (lower) sign of Eq. (5.1) is used for the initial (�nal) state, and products of

U(t1; t2) have been coalesced according to its well-known properties [27]. The factors Z
1=2
B

and Z
1=2
D are eliminated in favor of the denominators by taking the modulus of each side of

Eq. (5.1).

The operators Oj in Eq. (5.4) are operators of HQET. In general an operator from the

underlying theory is described by a sum of operators in HQET, cf. Secs. VII and VIII. On

the left-hand side the operators have the time dependence

Oj(t) = eiHtOje
�iHt (5.5)

of the Heisenberg picture, whereas on the right-hand side they have the time dependence

Oj(t) = eiH0tOje
�iH0t (5.6)

of the interaction picture. They are related by O(H)(t) = Uy(t; 0)O(I)(t)U(t; 0). When O

contains explicit time derivatives, as in some cases in Appendix A, the time dependence of

the Us generates additional contact terms in the T -product in the interaction picture.

This setup of time-ordered perturbation theory is equivalent to Rayleigh-Schr�odinger

perturbation theory [25]. The denominators on the right-hand side of Eq. (5.4) are rarely
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made explicit in the literature on HQET, but they are necessary. Indeed, in tracing the

equivalence to Rayleigh-Schr�odinger perturbation theory, one sees that the denominators

generate wave-function renormalization and remove jbvJ ; j0i and jcv0J 0; j0i from sums over

intermediate states. The procedure is analogous to taking connected vacuum correlation

functions.5 The in�nitesimal in the limit T !1(1� i0+) is needed to dampen the integrals

in Minkowski space, and it is unnecessary in Euclidean space. There is no issue of ana-

lytic continuation here: the symbol U(t; t0) is just an integral representation of the energy

denominators in ordinary perturbation theory.

The principal advantage of Eqs. (5.3) and (5.4) is that they separate cleanly how each

term in the heavy-quark expansion a�ects the matrix element on the left-hand side. As

desired, the normalization conditions on the full and in�nite-mass states cancel separately.

Each operator in LI can be treated one insertion after another, and the expansion leads

to matrix elements in the mass-independent states jbvJ ; j0i and hcv0J 0; j0j. On the other

hand, a formalism that starts with vacuum expectation values of time-ordered products and

proceeds to the left-hand side via the reduction formula leads to expressions with \in" and

\out" states whose masses equal those of the fully dressed states.

When employing HQET to describe lattice QCD it is especially helpful to obtain a series

in the mass-independent eigenstates of L(0) + Llight. These states depend only mildly on

the lattice spacing, through the light degrees of freedom. Thus, the discretization e�ects of

the heavy quark are truly encapsulated into the short-distance coe�cients of LI , and one

can estimate their e�ect simply by comparing the heavy-quark expansions of continuum and

lattice QCD. With the expansions derived in subsequent sections, the comparison is made

easily by substituting the usual coe�cients for the modi�ed ones.

Although not strictly necessary, it is convenient to choose normalization conditions for

the states. In the underlying theory we normalize plane-wave states so that

hB(p0)jB(p)i = v0(2�)3�(p0 � p); (5.7)

where v0 =
p
1 + v2. In continuum QCD v = p=M is the physical velocity of the true

hadron, and in lattice QCD the relation between v and p should tend to the same as

pa! 0. Equation (5.7) is convenient because it is relativistically invariant and its in�nite

mass limit is well behaved. We also normalize full HQET states so that

hBv(k
0)jBv(k)i = v0(2�)3�(k0 � k); (5.8)

where k(0) is a small residual momentum [23], and likewise for the in�nite-mass states. Note

that in Eq. (5.8) the factor of v0 does not introduce mass dependence; in HQET the velocity

is an ingredient in the construction of the e�ective Lagrangian, not a property of the states.

To regulate � functions one should smear plane-wave states into wave packets before

expanding out Eq. (5.3) or (5.4). With the same normalization condition (5.8) for fully

dressed and in�nite-mass HQET states, the factors of v0 and the smearing functions cancel

completely after expanding. One can thus re-write Eq. (5.4)

5Reference [28] notes both the signi�cance of the subtractions and the analogy with connected

vacuum amplitudes, but prefers not to use HQET.
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hDv0 jT O1 � � �OnjBvi = hcv0J 0; j0jT O1 � � �One
R
d4xLI jbvJ ; j0i? (5.9)

where the star on the right-hand side is a reminder to include the extra terms generated by

expanding out the denominator of Eq. (5.4). In Sec. VII and Appendix A this notation is used

for T -products hcv0J 0jT OOb
X jbvJi?, hcv0J 0jT Oc

XOOb
Y jbvJi?, etc., where the operators Oh

X are

those appearing in LI for avor h. The star means to collect all terms from the expansion

with the speci�ed insertions.

B. Trace formalism

To evaluate the right-hand side of Eq. (5.9) there is a powerful formalism, called the

trace formalism, which takes full advantage of heavy-quark symmetry [29]. The objective is

to calculate transition amplitudes of the form

T A1���AN

bv!c
v0

= hcv0J 0; j0jT �hv0�1G
A1
1 hv0 � � � �hv0�nGAn

n hv � � � �hv�NGAN

N hvjbvJ ; j0i? (5.10)

and

T A1���AN

bv!0 = h0jT �q�1G
A1
1 hv �hv�2G

A2
2 hv � � � �hv�NGAN

N hvjbvJ ; j0i?; (5.11)

where the GAk

k is a combination of covariant derivatives D (including �eld strengths F ��)

and light-quark bilinears �qq with Lorentz indices abbreviated by the superscript Ak.

The color and spin dependence of each static propagator Thv(x)�hv(y) [or Thv0(x)�hv0(y)]

factors into a Wilson line and a projector P+(v) =: P+ [or P+(v
0) =: P 0+]. That means that

the amplitudes can be written (for j = 1
2
mesons)

T A1���AN

bv!c
v0

= � trf �MJ 0(v
0)�1P

0

+ � � �P 0+�nP+ � � �P+�NMJ (v)�
A1���ANg; (5.12)

and

T A1���AN

bv!0 = � trf�1P+�2P+ � � �P+�NMJ (v)�
A1���ANg; (5.13)

where MJ and �MJ 0 are spin wave-functions and �A1���AN parametrizes the spatial wave-

functions and a trace over color of the Wilson lines, punctuated by the GAk , with the light

quark propagator. There is only one trace over heavy-quark spin, because products of traces

correspond to disconnected terms, which are subtracted when expanding Eq. (5.9). The

minus sign arises because the trace over spin is obtained after anti-commuting the left-most

quark �eld all the way to the right.

Spin wave-functions such asMJ (v) and �MJ 0(v
0) are determined by spin symmetry alone.

For j = 1
2
they are

M0(v) = i2�1=2P+(v)5; (5.14)

M1(v) = i2�1=2P+(v)=�: (5.15)

Charge conjugates are �M = 4My4,
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�M0(v) = i2�1=25P+(v); (5.16)

�M1(v) = i2�1=2=�� P+(v); (5.17)

where �� = �� in Minkowski space-time and �� = (��;���4) in Euclidean space-time. Note that

M = P+MP� and �M = P� �MP+. Generalizations to j = 0 and j = 1 baryons [30,31] and

to higher angular momentum [32] are available in the literature.

The functions �A1���AN cannot be obtained from symmetry considerations alone. They

depend on the velocities v0 and v and the quantum numbers of the light degrees of freedom.

They parametrize the long-distance dynamics of L(0)+Llight, so they do not depend on avor,

and they su�er from lattice artifacts only of the light degrees of freedom. As explained above,

cuto� e�ects of the heavy quark are captured in the coe�cients of the modi�ed HQET, which

multiply matrix elements (5.10) and (5.11).

VI. HADRON MASSES

The simplest application of the HQET formalism is to generate an expansion for the

rest mass of a heavy-light hadron. In numerical lattice calculations the energy of a state

of momentum p is computed by looking at the (imaginary) time evolution of a correlation

function

h�p0(x4)�
y

p
(0)i = �p0p

"
�(x4)

X
n

e�x4En(p)jhBnj�ypj0ij2 + �(�x4)
X
n0

ex4En0
(p)jh �Bn0 j�pj0ij2

#
;

(6.1)

where jBni (j �Bn0i) are full lattice-QCD states connected to the vacuum by �y
p
(�p). By

a combination of judicious choices of �y
p
and taking x4 large enough, one can isolate the

lower-lying states. At small momentum, the relation between energy and momentum is

E(p) =M1 +
p
2

2M2

; (6.2)

which de�nes the hadron's rest mass M1 and kinetic mass M2. (Some authors call M1 the

\pole" mass, but M1 and M2 are both properties of the particle's pole.) In this paper

upper-case is used to denote hadron masses, and lower-case to denote quark masses.

These energies can be thought of as eigenvalues of a Hamiltonian, de�ned via the transfer

matrix, which HQET models with Eq. (4.4). In Eq. (5.3) H is always to the left of U(0;�T ),
so one can make the split H = Hlight + H(0) � LI and act the �rst two terms on the

bra hbvJ ; j0j. Setting p = 0 and calling the leading eigenvalue

m1 + �� =
hbvJ ; j0j[Hlight +H(0)]jbvJ ; j0i

hbvJ ; j0jbvJ ; j0i
; (6.3)

the heavy-quark expansion of the hadron mass is generated by

M1 = m1 + ��� hbvJ ; j0jLI T e
R
d4xLI jbvJ ; j0i?; (6.4)
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where LI is at time 0, the time integration is from �1 to 0, and the star is a reminder

not to neglect the denominator in Eq. (5.3). The quark's rest mass enters solely additively

because its term in the Hamiltonian commutes with all others.

The expansion of Eq. (6.4) leads to reduced matrix elements that depend on the spin j

of the light degrees of freedom (j = 0 for the �b baryons, j = 1=2 for the B and B� mesons,

etc.), but not on the heavy quark's spin. Through order 1=m2
Q one de�nes

hbvJ ; j0jO2jbvJ ; j0i = �1; (6.5)

hbvJ ; j0jOBjbvJ ; j0i = dJ�2; (6.6)

hbvJ ; j0jODjbvJ ; j0i = �2�1; (6.7)

hbvJ ; j0jOEjbvJ ; j0i = �2dJ�2; (6.8)

and, in the notation of Ref. [26],Z
d4x hbvJ ; j0jO2(0)O2(x)jbvJ ; j0i? = T1; (6.9)Z
d4x hbvJ ; j0jOB(0)OB(x)jbvJ ; j0i? = T3 + dJ (T4 � T2); (6.10)

Z
d4x hbvJ ; j0jO2(0)OB(x)jbvJ ; j0i? =

Z
d4x hbvJ ; j0jOB(0)O2(x)jbvJ ; j0i? = dJT2: (6.11)

The J -dependence in Eqs. (6.5){(6.11) is d0 = 3 (for the B meson) and d1 = �1 (for the

B� meson). For the �b baryon there are fewer non-vanishing matrix elements; the above

formulae hold if one sets d1=2 = 0. The parameters ��, �n, �n, and Tn are the same as in

continuum QCD, apart from lattice artifacts of the light degrees of freedom. Combining

Eqs. (6.4){(6.11) the rest mass becomes

M1 = m1 + ��� �1

2m2

� dJ�2

2mB

+
�1

4m2
D

+
dJ�2

4m2
E

� T1
4m2

2

� 2dJT2
2m2 2mB

� T3 + dJ (T4 � T2)
4m2

B

:

(6.12)

The result (6.12) is simple enough that it could have been written down upon inspection of

Eqs. (3.14) and (3.17) and comparing to the continuum papers [33,34,28,26].

This result is the �rst example of the expansion for which Eq. (1.1) is a prototype.

Short-distance e�ects of the heavy quark, including lattice-spacing e�ects, are contained in

the \masses" m1, m2, mB, mD, and mE. If the bare mass is adjusted so that m2 = mQ, then

the mass formula (6.12) shows that the spin-averaged splittings, such as m�b� 1
4
(mB+3mB�),

are reproduced correctly to order 1=mQ. The Sheikholeslami-Wohlert action has a second

parameter, with which 1=mB can be adjusted (via a short-distance calculation) to reproduce

correctly the spin splittings, such as mB� � mB, to order 1=mQ. These adjustments are

essential, because in matrix elements the rest mass plays no role whatsoever.

In the usual HQET with m1 = 0, the quark mass is added to �� and the higher-order

terms. Ambiguities of the HQET renormalization scheme, including those of infrared renor-

malons in the on-shell scheme, cancel in the sum. Similarly, the di�erence m2 �m1 can be

added to Eq. (6.12): M = M1 + m2 � m1. Adding the residual mass in this way has the

virtue that m2 �m1 does not su�er from infrared ambiguities, even in the on-shell scheme.
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VII. SEMILEPTONIC FORM FACTORS

Another interesting application of HQET is the heavy-quark expansion of form factors

in the exclusive semileptonic decays B ! D�l� and B ! Dl�. These decays o�er the most

promising way to decrease the uncertainty in the CKM element jVcbj, provided the hadronic
matrix elements can be calculated reliably. Recent work [35,36] shows that calculations of

the form factors at zero recoil with statistical errors of a few percent are feasible. The aim

of this section is to describe the 1=mQ and 1=m2
Q contributions to the lattice observables

calculated in Refs. [35,36], and compare them to the description of the form factors in the

usual HQET. The technical details are in Appendix A, mostly following Refs. [33,34].

The transitions are mediated by the charged weak currents

V� = �ci�b; A� = �ci�5b; (7.1)

where �c and b are conventionally normalized continuum quark �elds. Currents in lattice

gauge theory and in HQET are introduced below, but the symbols V� and A� are reserved

for the physical currents. The hadronic part of the transitions involves the matrix elements

hD(�)jV�jBi and hD�jA�jBi. For B ! Dl� there are two form factors h+ and h�. With the

normalization (5.8) they are related to the matrix element by

hD(v0)jV�jB(v)i = 1
2
(v0 + v)�h+(w)� 1

2
(v0 � v)�h�(w); (7.2)

where w = �v0 � v. Zero recoil corresponds to w = 1. In Eq. (7.2) the �nal velocity is kept

distinct from the initial velocity to be able to obtain h�(1). For B ! D�l� there are three

axial form factors, de�ned by

hD�(v0; �0)jA�jB(v)i = 1
2
(w + 1)i�0

�
hA1

(w) + 1
2
i�0�v v�hA2

(w) + 1
2
i�0�v v0�hA3

(w); (7.3)

and a vector form factor, but at zero recoil the decay rate depends only on hA1
(1). For

reasons that will become clear below, the zero-recoil matrix element

hD�(v; �0)jV�jB�(v; �)i = �0�� v�h1(1) (7.4)

and its form factor h1(1) are also of interest.

Note that continuumQCD currents de�ne the form factors. To generate the heavy-quark

expansion of these form factors, one replaces the currents V� and A� with e�ective currents

built from the heavy-quark �elds and the �elds of the light degrees of freedom. The e�ective

currents and the heavy-quark Lagrangian are treated to the desired order in 1=mQ, and

Eq. (5.4) should be used to generate the expansion, consistent to that order.

The zeroth order is simple and worth reviewing briey. The QCD currents are related

to HQET currents via

V� :
= �V �cv0i

�bv � 1
2
�V (v

0 � v)��cv0bv � 1
2
V (v

0 � v)��cv0i�
��bv; (7.5)

A� :
= �A�cv0i

�5bv � 1
2
�A(v

0 � v)��cv05bv � 1
2
A(v

0 � v)��cv0i�
��5bv; (7.6)

where the symbol
:
= means that the operators, though de�ned in di�erent �eld theories, have

the same matrix elements. The short-distance coe�cients depend on the two masses; �j and

16



j are symmetric upon interchanging the masses (j 2 fV;Ag); �j is anti-symmetric; at the

tree level they satisfy �j = 1, �j = j = 0. To obtain the leading heavy-quark expansion,

one simply takes matrix elements of the e�ective currents in the states of the in�nite-mass

theory. From the trace formalism one �nds

h+(w) =
h
�V + 1

2
(w � 1)V

i
�(w) +O(1=mQ); (7.7)

h�(w) =
1
2
(w + 1)�V �(w) +O(1=mQ); (7.8)

h1(w) =
h
�V + 1

2
(w � 1)V

i
�(w) +O(1=mQ); (7.9)

hA1
(w) = �A�(w) +O(1=mQ); (7.10)

with a single HQET form factor �(w), called the Isgur-Wise function. At zero recoil it

is normalized by heavy-quark symmetry [8], so �(1) = 1. Therefore, the leading term in

heavy-quark expansion is h+(1) = h1(1) = �V , h�(1) = �V , and hA1
(1) = �A.

The 1=mQ [29] and 1=m2
Q [33,34] corrections to Eqs. (7.7){(7.10) have been worked out

with HQET. This section repeats the analysis through order 1=m2
Q for the lattice approxi-

mants to the form factors introduced in Refs. [35,36]. The only crucial di�erence is that the

short-distance coe�cients are tracked carefully and their contributions are kept separate in

the �nal results.

A. Lattice and HQET currents

To compute the form factors in Eqs. (7.2){(7.4) with lattice gauge theory one introduces

combinations of lattice �elds with the same quantum numbers as V� and A�. The lattice

currents are given by a series of dimension-three, -four, -�ve, etc., operators, with coe�cients

chosen to attain the right normalization and to reduce lattice artifacts. Several choices have

been made in the literature, but with Wilson fermions they can all be described by HQET:

the di�erent choices simply have di�erent short-distance coe�cients.

Let ZV cbV
�
lat (ZAcbA

�
lat) denote the lattice approximant to the charged b! c vector (axial-

vector) current. To conform with much of the literature on lattice gauge theory, the current's

normalization factor Zjcb in shown explicitly. Then, suppressing the space-time index, the

lattice currents are related to HQET currents via

ZV cbVlat
:
= V (0) +

X
s=1

sX
r=0

V (r;s�r) (7.11)

:
= V (0) + V (0;1)+ V (1;0)+ V (0;2) + V (1;1) + V (2;0) + � � � (7.12)

and similarly for A�
lat. The HQET operator V (r;s) carries dimension 3 + r + s. To make

contact with the usual HQET, it is helpful to think of the dimensions being balanced by

r powers of 1=mc and s powers of 1=mb. The dimension-three vector current is

V (0)
� = (�V + ��latV�

)�cv0i�bv � 1
2
�latV�

(v0 � v)��cv0bv � 1
2
 latV��

(v0 � v)��cv0i���bv: (7.13)

In general the coe�cients depend on the directional indices, because the lattice singles out

the time direction. The overall factor ZV is conventionally chosen so that ��latV0
= 0. Then
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��latVi
vanishes at the tree level, but not in general. As with the usual HQET �latV�

and latV��

are, respectively, antisymmetric and symmetric upon interchange of heavy quark masses and

both vanish at the tree level. The operator multiplying �latV�
(latV��

) makes a contribution at

�rst (second) order in v0 � v.

At dimension four and higher many operators arise, and a complete catalog requires a

voluminous notation. Only the �-like terms are listed here. �-like terms are not needed until

Sec. VIID, and -like terms are not needed at all. With this restriction, the dimension-four

currents are

V (0;1)
� = ��(0;1)V

�cv0i� =D?bv

2m3b

; (7.14)

V (1;0)
� = +�

(1;0)
V

�cv0
 

=D?0i�bv

2m3c

; (7.15)

where D?0 = D + v0 � Dv0. The notation �
(1;0)
V =m3c and �

(0;1)
V =m3b for the short-distance

coe�cients follows a helpful convention: for degenerate quarks the coe�cient is merely

1=m3, which thus depends only on the indicated avor; �
(r;s)
V then describes the additional

radiative corrections for non-degenerate masses. The dimension-�ve currents are

V (0;2)
� = �

(0;2)

V D2
?

�cv0i�D
2
?
bv

8m2
D2
?
b

+ �
(0;2)
V sB

�cv0i�s
��B��bv

8m2
sBb

� �
(0;2)
V �E

�cv0i�i=Ebv

4m2
�Eb

; (7.16)

V (2;0)
� = �

(2;0)

V D2
?

�cv0
 

D2
?0
i�bv

8m2
D2
?
c

+ �
(2;0)
V sB

�cv0s
��B0��i�bv

8m2
sBc

+ �
(2;0)
V �E

�cv0i=E
0
i�bv

4m2
�Ec

; (7.17)

V (1;1)
� = �z(1;1)V 1

�cv0(
 

=D?0i�=D?)1bv

2m3c 2m3b

� z
(1;1)
V s

�cv0(
 

=D?0i� =D?)sbv

2m3c 2m3b

; (7.18)

where again 1=m2
Xh depends only on the indicated avor and �

(r;s)
V depends on both masses.

The two coe�cients z
(1;1)
V 1 and z

(1;1)
V s multiply the spin-independent and spin-dependent part

of the Dirac matrix structure. They do not reduce to 1 for equal masses, because 1=m3 is

de�ned through the dimension-four currents, but for most choices of the lattice current they

do equal 1 at the tree level.

B. At zero recoil: h+(1) and h1(1)

The matrix elements that are to be described are

hDjZjjlatjBi = hDv0 jj(0)jBvi+ hDv0 jj(1)jBvi + hDv0 jj(2)jBvi; (7.19)

where j is V or A, and j(1) = j(0;1)+ j(1;0), j(2) = j(0;2)+ j(1;1)+ j(2;0). The �rst two matrix

elements on the right-hand side of Eq. (7.19) must be expanded via Eq. (5.4) to second and

�rst order in LI , respectively. There are, consequently, many HQET matrix elements to

introduce. The matrix elements and their abbreviations, analogous to those in Sec. VI, are

listed in Table I. The notation mostly follows previous work [33,34].
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TABLE I. Notation for HQET matrix elements in Refs. [33,34] and this work.

contribution Ref. [33] Ref. [34] this work

hj(0)i �(w) 1 �(w)

hj(1)i ��; 3(w) ��; 3(w)

hTj(0)O2i
?

A1(w) �1 A1(w)

hTj(0)OBi
?

A2;3(w) �3 A2;3(w)

hj(2)i �0;:::;3(w) �1;2 �1;:::;4(w)

hTj(1)O2i
?

E1;2;3(w); E
0

1;2;3(w) �2; 3(w); F1; 3(w)

hTj(1)OBi
?

E4;:::;11(w); E
0

4;:::;11(w) �4;:::;11(w); F4;:::;11(w)

hTj(0)QDi
? 2B1(w) 2�1 �1

hTj(0)QEi
? 2B2;3(w) 2�3 �2

hTO2j
(0)O2i

?
D1(w) D D

hTO2j
(0)OBi

?
D2;3(w) E E

hTOBj
(0)OBi

?
D4;:::;10(w) R1;2 R1;2

hTj(0)O2O2i
?

C1(w) A A = �1
2
D

hTj(0)O2OBi
?

C2;3(w) B B = �E

hTj(0)OBOBi
?

C4;:::;12(w) C1;3 C1;3 = �1
2
R1;2

One can work out the matrix elements using the trace formalism. At zero recoil

hDvjj(1)jBvi vanishes. For the vector-current transitions B ! D and B� ! D� with

v = v
0 = 0 one �nds

hD(�)jZV cbV 0
latjB(�)i = �VW

(0)
JJ +W

(2)
JJ ; (7.20)

in which hDv jV (0)jBvi yields

W
(0)

JJ = 1 +

 
1

4m2
2c

+
1

4m2
2b

!
A+

�
1

2m2c

1

2mBc

+
1

2m2b

1

2mBb

�
dJB

+

 
1

4m2
Bc

+
1

4m2
Bb

!
[C1 + dJC3] +

1

2m2c

1

2m2b

D (7.21)

+

�
1

2mBc

1

2m2b

+
1

2m2c

1

2mBb

�
dJE +

1

2mBc

1

2mBb

[R1 + dJR2];

and hDvjV (2)jBvi yields

W
(2)
JJ =

0
B@ �

(2;0)

V D2
?

8m2
D2
?
c

+
�
(0;2)

VD2
?

8m2
D2
?
b

� z
(1;1)
V 1

2m3c 2m3b

1
CA �1 +

0
@ �

(2;0)
V sB

8m2
sBc

+
�
(0;2)
V sB

8m2
sBb

� z
(1;1)
V s

2m3c 2m3b

1
A dJ�2:

(7.22)

The subscript JJ 0 denotes the initial and �nal spins, although here J 0 = J . The spin factor

d0 = 3 for B ! D and d1 = �1 for B� ! D�. The coe�cient factors reveal the origin of

the contribution. By heavy-quark symmetry �1 and �2 are exactly the same as in Sec. VI,

and A, B, C1, C3, D, E, R1, and R2 are new constants parametrizing the light degrees of

freedom, introduced in Appendix A and the last six rows of Table I.
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Equation (7.20) gives lattice approximants to the form factors h+(1) and h1(1). One

striking feature of Eqs. (7.20){(7.22) is that there are no contributions of order 1=mQ. For

continuum QCD, this is known as Luke's theorem [29]. Matrix elements of j(1) in the

in�nite-mass states contribute only when v0 6= v, so a single power of 1=m3 does not appear

in Eq. (7.20). As shown in Appendix A1b, terms with a single power of 1=m2 and 1=mB

are absent as a consequence of heavy-quark symmetry and Eq. (5.4). Thus, Luke's theorem

holds for lattice QCD also.

At order 1=m2
Q, matrix elements that might have multiplied 1=m2

D and 1=m2
E also vanish;

so do matrix elements involving four-quark operators. Furthermore, the parameters A, B,

C1, and C3 can be eliminated, as indicated in the right-most column of the last three rows of

Table I. As shown in Appendix A1 e, this is another consequence of heavy-quark symmetry

and Eq. (5.4). Taking these relations into account

W
(0)
JJ = 1� 1

2
�2

2D ��2�BdJE � 1
2
�2

B[R1 + dJR2]; (7.23)

where

�X =
1

2mXc

� 1

2mXb

: (7.24)

So W
(0)

JJ is correctly reproduced if 1=m2 and 1=mB are adjusted to their continuum values,

in particular if the analysis identi�es m2 with the heavy quark mass.

Another lattice approximant to h+(1) and h1(1) is given by double ratios introduced in

Refs. [35,36]

R+ =
hDjV 0

latjBihBjV 0
latjDi

hDjV 0
latjDihBjV 0

latjBi
; (7.25)

R1 =
hD�jV 0

latjB�ihB�jV 0
latjD�i

hD�jV 0
latjD�ihB�jV 0

latjB�i
: (7.26)

Then jh+;1(1)j2 are approximated by �2V0R+;1, where �
2
V0

= ZV cbZV bc=ZV ccZV bb. To see the

advantage of the double ratios, let us rewrite W
(2)
JJ = �W

(2)
JJ + �W

(2)
JJ ,

�W
(2)
JJ = 1

2
�2

3

h
z
(1;1)
V 1 �1 + z

(1;1)
V s dJ�2

i
; (7.27)

�W
(2)
JJ =

0
B@ �

(2;0)

V D2
?

8m2
D2
?
c

+
�
(0;2)

VD2
?

8m2
D2
?
b

� z
(1;1)
V 1

8m2
3c

� z
(1;1)
V 1

8m2
3b

1
CA�1

+

0
@ �

(2;0)
V sB

8m2
sBc

+
�
(0;2)
V sB

8m2
sBb

� z
(1;1)
V s

8m2
3c

� z
(1;1)
V s

8m2
3b

1
A dJ�2: (7.28)

From Eq. (7.20) and the de�nitions one �nds

�V0

q
R+;1 = �VW

(0)

JJ + �W
(2)

JJ +O((�
(r;s)
V � 1)=m2

Q): (7.29)

The contribution of �W
(2)

JJ , which stems from the dimension-�ve currents, largely cancels.

Hence, the double ratios depend most strongly on 1=m2, 1=mB, and 1=m3, namely the

coe�cients in L(1) and V (1)
� .
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Equation (7.29) is an important practical result. If one tolerates errors of order �s=m
2
Q

and 1=m3
Q, then �V0

q
R+;1 only requires m2 = mB = m3 and z

(1;1)
V = 1 at the tree level,

and details of the currents V (0;2) and V (2;0) do not matter at all. With the widely used

Sheikholeslami-Wohlert action [5], this accuracy is easy to arrange [1,35]. In practice an

error comes also from �V and �V0, which are available only to two loops [37] and one loop [38],

respectively. So the recent result [35] for h+(1) has a heavy-quark discretization e�ect of

order �2s, which could be reduced by calculating �V0 to two loops.

C. At zero recoil: hA1
(1)

To obtain lattice approximants to hA1
(1) one must work out Eq. (7.19) for a B ! D�

transition mediated by the axial current. In HQET the currents are as in Eqs. (7.13){

(7.18) with a factor 5 inserted in the obvious places. In this case, the overall factor ZAcb is

conventionally chosen so that ��lat
Acb

i

= 0.

A useful matrix element has the D� spin is aligned along the i direction and v = v
0 = 0.

One �nds

hD�jZAcbAi
latjBi = �AcbW

(0)
01 + �W

(2)
01 + �W

(2)
01 (7.30)

in which hD�v jA(0)jBvi yields|after eliminating A, B, C1, and C3|

W
(0)
01 = 1� 1

2
�2(�2D � 2�BE)� 1

2
�B(�BR1 ��BR2)�

1

2mBc 2mBb

�
4
3
R1 + 2R2

�
(7.31)

with

�X =
1

2mXc

+
3

2mXb

: (7.32)

As before, the zero-recoil matrix element does not depend on the dimension-six Lagrangian.

The matrix element hD�v jA(2)jBvi of the dimension-�ve current yields

�W
(2)
01 =

�
1
2
�2

3 +
4
3

1

2m3c2m3b

�
z
(1;1)

Acb1
�1 �

�
1
2
�3�3 � 2

1

2m3c2m3b

�
z
(1;1)

Acbs
�2; (7.33)

�W
(2)
01 =

0
B@�

(2;0)

AcbD2
?

8m2
D2
?
c

+
�
(0;2)

AcbD2
?

8m2
D2
?
b

� z
(1;1)

Acb1

8m2
3c

� z
(1;1)

Acb1

8m2
3b

1
CA �1 (7.34)

�
0
@�(2;0)AcbsB

8m2
sBc

� 3�
(0;2)

AcbsB

8m2
sBb

� z
(1;1)

Acbs

8m2
3c

+
3z

(1;1)

Acbs

8m2
3b

1
A�2;

after grouping terms as in Eqs. (7.27) and (7.28).

Reference [36] introduces a third double ratio

RA1
=
hD�jAi

latjBihB�jAi
latjDi

hD�jAi
latjDihB�jAi

latjBi
: (7.35)
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After substituting for each matrix element the foregoing expressions one �nds

�A

q
RA1

= ��Acb
�W

(0)
01 + �W

(2)
01 +O((��

(r;s)
A � 1)=m2

Q); (7.36)

where �2A = ZAcbZAbc=ZAccZAbb, ��2Acb = �Acb�Abc=�Acc�Abb, and

�W
(0)
01 = 1� 1

2
�2

2D ��2�BE + 1
6
�2

B(R1 + 3R2) (7.37)

�W
(0)
01 = �1

6
�2

3(�z
(1;1)

Acb1
�1 + 3�z

(1;1)

Acbs
�2);

where �zAcb = ��AcbzAcb=�Acb . As before the contribution �W
(2)
01 of the dimension-�ve currents

largely cancels and the double ratio depends most strongly on 1=m2, 1=mB, and 1=m3,

namely the coe�cients in L(1) and A(1)
� .

Note, however, that �A
q
RA1

does not yield hA1
(1) but

�2ARA1
=
hB!D�

A1
(1)hD!B�

A1
(1)

hD!D�

A1
(1)hB!B�

A1
(1)

: (7.38)

Nevertheless, if the action and currents are tuned so that 1=m2, 1=mB, 1=m3, and z
(1;1)
j

match the usual HQET (to a desired accuracy), the three double ratios R+, R1, and RA1

can be combined to yield the 1=m2
Q contribution to hA1

(1). For example, if one tolerates

errors of order �s=m
2
Q, as well as 1=m

3
Q, one only requires m2 = mB = m3 at the tree level,

and one may set z
(1;1)
V = �z

(1;1)
A = 1. Then, dropping the distinction between m2, mB, and

m3, the double ratios are

��2VR+ = 1� 2�2`P ; (7.39)

��2VR1 = 1� 2�2`V ; (7.40)

��2ARA1
= 1��2(`P + `V + `A); (7.41)

where ��V = �V =�V , ��A = �A=��A, and

2`P = D +R1 � �1 + 3(2E +R2 � �2) (7.42)

2`V = D +R1 � �1 � (2E +R2 � �2) (7.43)

`A = 4
3
(�1 �R1) + 2(�2 �R2): (7.44)

In the approximation being considered the desired form factor is

hA1
(1)

�A
= 1��

 
`V

2mc

� `P

2mb

!
+

`A

2mc 2mb

: (7.45)

By �tting Eqs. (7.39){(7.41) one can extract `P , `V , and `P + `V + `A, and then one has the

information necessary to reconstitute hA1
(1). As with h+(1) there are, in practice, further

errors because �A and �A are available only at �nite-loop order [37,38].
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D. Near zero recoil: h�(1)

To extract h�(1) matrix elements with non-zero velocity transfer are needed, and some

new features appear in the analysis. For example, lattice approximants to h� receive a

contribution from the term in V (0) proportional to �latV�
. Similar \�-like" terms omitted

from Eqs. (7.14){(7.18) also make contributions. We shall not write out all these terms but

indicate instead how they contribute to matrix elements.

Suppose one extracts the form factor from a matrix element with v0 = �v, pointing in
the i direction. Then

hD(�v)jVijB(v)i = vi
n
�latVi

W
(0)
00 + Y

(2)
00 +X

(1)
00 +X

(2)
00

o
; (7.46)

where W
(0)
00 is given in Eq. (7.23), and Y

(2)
00 is like W

(2)
00 but with �-like coe�cients replacing

�
(2;0)
V , �

(0;2)
V , and z

(1;1)
V . The expression in braces is a lattice approximant to h�(w). For

in�nitesimal vi the matrix element hDv0 jV (1)jBvi yields

X
(1)
00 =

0
@�(1;0)V

2m3c

� �
(0;1)
V

2m3b

1
A h2�3(1)� �� + 2�2�3(1) + 2�B��(1)

i

�
0
@�(1;0)V

2m3c

+
�
(0;1)
V

2m3b

1
A h�2

~�0(1) + �B
~��(1)

i
; (7.47)

with �2, �B as in Eq. (7.24) and

�X =
1

2mXc

+
1

2mXb

: (7.48)

The chromoelectric part of hDv0 jV (2)jBvi yields

X
(2)
00 =

0
@ �

(2;0)
V �E

4m2
�Ec

� �
(0;2)
V �E

4m2
�Eb

1
A 2

3
[�1 + 3�2] : (7.49)

The coe�cient factors, together with Table I, make clear the origin of each term. The

in�nite-mass matrix elements ��, �1, and �2 are exactly those introduced earlier, and the

new ones �3(1), �3(1), ��(1), ~�0(1), and ~��(1) are introduced in Appendix A2. As before,

the dimension-six e�ective Lagrangian drops out, but the dimension-�ve currents contribute

in several places: in W
(0)
00 , Y

(2)
00 , and X

(2)
00 . Further operators �i�cv0D�

?
bv, i�cv0

 

D
�
?0
bv, �cv0E

�bv,

and �cv0E
0�bv, whose coe�cients vanish at the tree level, modify the short-distance coe�cients

of �� in X
(1)
00 and of �1 in X

(2)
00 . Thus, many short-distance coe�cients inuence the accuracy

of Eq. (7.46).

The main drawback of Eq. (7.46) is, however, the requirement v0 = �v for hadrons of

unequal mass. Numerical calculations employ a �nite volume and, hence, discrete momen-

tum. Moreover, with the many \masses" the relation between momentum and velocity is

not plain. To remove these ambiguities Ref. [35] introduced another double ratio

R� =
hDjV i

latjBi
hDjV 0

latjBi
hDjV 0

latjDi
hDjV i

latjDi
: (7.50)
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In the spatial matrix elements, the initial state is at rest and the �nal state has a small

velocity in the i direction; in the temporal matrix elements, initial and �nal states both are

at rest. In continuum QCD, the analogous �rst ratio is [cf. Eq. (7.2)]

hDjV ijBi
hDjV0jBi =

1
2
v0i

"
1 � h�(1)

h+(1)

#
; (7.51)

to �rst order in v0i, and the second is

hDjV ijDi
hDjV0jDi =

1
2
v0i; (7.52)

because in the elastic case h+(1) = 1 and h�(w) = 0. Thus, with a suitable adjustment of

the lattice currents, one can use R� to obtain a lattice approximant to h�(1)=h+(1).

In the double ratio of lattice currents the (mass-dependent) factors ZV cancel. With the

results of Appendix A2, and noting that �V cc = 1 and �latV cc

i

= 0,

R� =
�V cb + ��lat

V cb

i

� [�lat
V cb

i

+ Y
(2)
00 +X

(1)
00 +X

(2)
00 ] + ���

(2)

V cbW
(2)
00

�V cb(1 + ��latV cc

i

+ ���
(2)

V ccW
(2)
00 )

+O(1=m3
Q); (7.53)

where ���
(2)

V cb is a combination of ��
(r;s)
Vi

=�
(r;s)
V and (��latVi

��latVi
)=�V . HereW

(2)
00 , X

(s)
00 , and Y

(2)
00

are precisely as above, though in the denominator W
(2)
00 is evaluated with avor c in both

�nal and initial states. As with the other double ratios, one would like to extract the long-

distance information from R�. To do so one must have a way to calculate the short-distance

coe�cients, either to adjust them so �latVi
= �V and ��latVi

= ���
(2)
V = 0, or to constrain a �t.

A simple version of the latter strategy is available if one tolerates errors in h�(1) of order

�s=mQ and �s=m
2
Q. Then it is enough to adjust m3 = m2 = mB at the tree level, one may

set �
(r;0)
V = �

(0;s)
V = 1, and one may neglect Y

(2)
00 and ���

(2)

V W
(2)
00 . In the approximation and

hand, Eq. (7.53) can be rearranged to yield

�V cb[1� (1 + ��latV cc

i

)R�] + ��latV cb

i

� �latV cb

i

= X
(1)
00 +X

(2)
00 : (7.54)

Setting m3 = m2 = mB, but keeping m�E distinct, Eqs. (7.47) and. (7.49) yield

X
(1)
00 +X

(2)
00 = �`

(1)
� +��`

(2)
� + 2

3
��E��E[�1 + 3�2]; (7.55)

where

`
(1)
� = 2�3(1) � ��; (7.56)

`
(2)
� = 2�3(1) + 2��(1) � ~�0(1)� ~��(1): (7.57)

One may �t the left-hand side of Eq. (7.54) to the right-hand side of Eq. (7.55) with 1=m2
�E

at the easily obtained tree level. After the �t one may reconstitute h�(1) from

h�(1)

h+(1)
= �V +�`

(1)
� +��

h
`
(2)
� + 2

3
(�1 + 3�2)

i
: (7.58)

In practice, there are also errors of order �ns because the coe�cients �V , �V , ��
lat
V , and �latV

are available only to a �nite loop order. Note that the matrix element �1+3�2 appears also

as the 1=mQ correction to the pseudoscalar meson mass, cf. Eq. (6.12), so a simultaneous

�t may turn out to be useful.
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VIII. LEPTONIC DECAYS

A straightforward application of the trace formalism gives the �rst-order heavy-quark

expansion of the matrix element in leptonic decays. The result for lattice QCD is in Ref. [39],

but for completeness the derivation is given here.

With the states normalized as in Eq. (5.8), the QCD amplitudes appearing in leptonic

decays of heavy-light pseudoscalar and vector mesons can be written

h0jA�jH(v)i = iv��H=
p
2; (8.1)

h0jV�jH�(v; �)i = ���H�=
p
2; (8.2)

where V� and A� are now the vector and axial vector currents with a light and a heavy

quark, and H (H�) is the pseudoscalar (vector) meson with heavy avor h. The relation

between the parameter �H and the conventional pseudoscalar meson decay constant is

�H = fH

q
MH: (8.3)

There are several conventions for de�ning the vector meson decay constant, but only �H� is

considered here.

In lattice gauge theory the decay constants are approximated with matrix elements of

lattice currents ZV qhV qh and ZAqhAqh with the same quantum numbers as V� and A�. As

before, they are not made explicit, to allow for a variety of choices. The underlying currents

are described by HQET currents,

ZV qhV qh
�

:
= �V qh �qi�hv + �V qhv��qhv �

�
(0;1)

V qh

2m3

�qi� =D?hv + � � � (8.4)

ZAqhAqh
�

:
= �Aqh �qi�5hv + �Aqhv� �qi���5hv �

�
(0;1)

Aqh

2m3

�qi�5=D?hv + � � � (8.5)

where �q is a light anti-quark �eld. The coe�cient 1=2m3 is de�ned through the degenerate-

mass heavy-heavy vector current, and �
(0;1)
j captures the remaining radiative corrections. At

the tree level �
(0;1)
j = 1. The coe�cients �j vanish at the tree level, and the operators that

they multiply do not a�ect �H(�). Additional dimension-four operators, whose coe�cients

vanish at the tree level, are not written out.

The static limit is given by the matrix element of the �rst term of the HQET currents:

h0j�qi��hvjhvJi = �1
2
�1 tr [i��MJ ]

= i!��1=
p
2; (8.6)

where �� = �5 or � and !� = v� or �i��, for J = 0 or 1. The constant �1=2 is introduced

to parametrize the light degrees of freedom; in the static limit, �H = �H� = �1. As with

the quantities introduced in Secs. VI and VII, �1 di�ers from its continuum limit, but the

di�erence stems only from the light degrees of freedom.

At order 1=mQ there are three contributions to �H(�), from the kinetic and chromomag-

netic energy, and from the correction to the current. They take the form
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h0jZjj�jH(�)i = �jh0j�qi��hvjhvJi+
�j

2m2

Z
d4x h0jT �qi��hv(0)O2(x)jhvJi? (8.7)

+
�j

2mB

Z
d4x h0jT �qi��hv(0)OB(x)jhvJi? �

�
(0;1)
j

2m3

h0j�qi��=D?hvjhvJi:

Spin-dependent factors may be obtained with the trace formalism. One has

Z
d4x h0jT �qi��hvO2(x)jhvJi = �1

2
(��1A2) tr [i��MJ ]

= ��1A2p
2
i!� (8.8)

Z
d4x h0jT �qi��hvOB(x)jhvJi = � 1

12
(��1AB) tr [i���

��MJ���] �
�
� �

�
�

= �dJ�1AB

3
p
2

i!� (8.9)

h0j�qi�� =D?hvjhvJi = �1
2
�1A3 tr [i��

�
?
MJ�]

= +
dJ�1A3p

2
i!� (8.10)

where A2, AB, and A3 parametrize the light degrees of freedom, and dH = 3, dH� = �1.
Combining the equations of motion and heavy-quark symmetry,

A3 =
1
3
(���mq); (8.11)

where mq is the mass of the light quark [21]. Combining Eqs. (8.6){(8.11)

�H(�) = �1

"
�j

 
1� A2

2m2

� dJ

3

AB

2mB

!
� �

(0;1)
j

dJ

3

���mq

2m3

#
: (8.12)

As expected on the general grounds outlined in Sec. IV, the rest mass does not appear. Pre-

viously this had been shown only by explicit calculation [21]. Like the mass formula (6.12),

this result is simple enough that it could have been written down upon inspection of the

corresponding continuum formula [40,21].

To obtain the correct static limit of the decay constants, one must adjust the normaliza-

tion factors Zj to yield �j in the leading terms. This is known at the one-loop level for the

Wilson [41] and Sheikholeslami-Wohlert actions [42]. Similarly, to obtain the 1=mQ correc-

tions, one must adjust the lattice action and currents so that m2 = mB = m3 = mQ, which

is easy at the tree level. With these choices, Eq. (8.12) predicts that the heavy-light decay

constants should depend mildly on the lattice spacing. Explicit calculation supports this

prediction [43,44]. On the other hand, when not all these choices are made, the dependence

on the lattice spacing could be more pronounced, because then 1=m3 or 1=mB could vary

rapidly with mQa. Explicit calculation supports this prediction too [45].
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IX. DISCUSSION AND CONCLUSIONS

Two themes run through Symanzik's application of e�ective �eld theory to the study of

cuto� e�ects. The �rst is descriptive [2]. The local e�ective Lagrangian organizes devia-

tions from the continuum limit through a series of higher-dimension operators, multiplied

with certain coe�cients. When the higher-dimension terms are small, they can be treated

as perturbations, and their inuence can be propagated from the e�ective Lagrangian to

physical quantities. The second theme turns the description into a weapon [16]. Details

of the underlying lattice action alter the e�ective Lagrangian only via the short-distance

coe�cients. If a given action leads to a reduced (or vanishing) coe�cient, then the process

independence of the coe�cient guarantees that its associated operator has a reduced (or

vanishing) e�ect on all observables.

The two themes also run through the application of HQET to lattice QCD. The con-

crete results|the expansions given in Eq. (6.12), Eqs. (7.20){(7.28), Eqs. (7.30){(7.34),

Eqs. (7.46){(7.49), and Eq. (8.12)|describe the deviations from the static limit of the

mass, semileptonic form factors, and decay constant of heavy-light mesons. These descrip-

tions hold, as always in HQET, when momentum transfers are much smaller than the heavy

quark mass(es). Details of the lattice alter the validity of the description super�cially: they

merely change the short-distance coe�cients. On the other hand, the details alter the utility

of the description greatly: if a coe�cient is tuned correctly, to some accuracy, in one observ-

able, then its associated operator contributes correctly, to that accuracy, in all observables.

In all examples, one sees that the leading 1=mQ dependence is reproduced correctly if the

short-distance coe�cients 1=m2, 1=mB, and 1=m3 are adjusted correctly. These conditions

can be obtained, respectively, through suitable adjustments of the bare mass, of the \clover"

coupling in the Sheikholeslami-Wohlert action, and of a tunable parameter in the current.

It may be worthwhile to contrast the formalism developed here with other methods for

treating heavy quarks in lattice gauge theory. One approach is to derive HQET or NRQCD

in the continuum and discretize the result. In fact, both e�ective theories were originally for-

mulated with this idea in mind [9{12]. The resulting lattice theory has ultraviolet divergences

that are more severe than QCD, so one must either keep a�1 � mQ and employ a highly

improved lattice action [10,11] or restrict one's attention to the in�nite-mass limit [46]. The

approach developed here and in Ref. [1] examines the large-mass limit of Wilson fermions,

and as a! 0 the only ultraviolet divergences that are encountered are those of QCD.

Another approach is based on lattice actions that are asymmetric under interchange of

the temporal and spatial axes [1]. With a suitable adjustment of the asymmetry couplings,

the physics can be made relativistically covariant. For example, one can adjust the action so

that m1 = m2. Cuto� e�ects can be analyzed either with Symanzik's e�ective Lagrangian,

provided one retains the full dependence on mQa in the coe�cient functions, or with the

HQET description developed here. Initial results [47] with the asymmetric action indicate

that the Symanzik and HQET interpretations give the same physical results.

Many papers have followed an ad hoc combination of Symanzik and heavy-quark e�ec-

tive theories. Numerical data are generated with arti�cially small heavy-quark masses, to

reduce mQa. Then these data are extrapolated up in mass guided by the (continuum) 1=mQ

expansion. In practice, however, it is hard to �nd a region with mQa � 1, for Symanzik's

analysis genuinely to apply to cuto� e�ects, and �QCD=mQ � 1, for HQET genuinely to
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apply to the mass dependence. Often neither asymptotic condition realistically describes

the numerical data. The description developed in this paper naturally applies to the subset

of such data where HQET is indeed valid, so these data could be reanalyzed in light of the

expansions given above.

One might also imagine reducing the lattice spacing a by an order of magnitude or so.

In this regime, the pictures painted by HQET and Symanzik's e�ective Lagrangian become

indistinguishable from each other, even for the bottom quark [1]. The brute-force approach

is costly, however. Processor requirements grow as a�5 (if not faster) and memory as a�4.

For B physics it makes more sense to invest steady improvements in computers into removing

the quenched approximation, rather than into a radical reduction of the lattice spacing.

A gap left by this paper is the calculation of the short-distance coe�cients, which depend

on the lattice action. They can be obtained with some accuracy through perturbation theory

in the gauge coupling. There are, for example, general formulae, valid to every order in

perturbation theory, relating the self energy of the underlying lattice theory to the �rst two

coe�cients of the e�ective Lagrangian, m1 and 1=m2 [22]. Similarly, radiative corrections

to the currents are related to the (on-shell) vertex function [38]. Beyond the one-loop level

the calculations will not be easy, but at least they are well de�ned.

An even better strategy would be to devise nonperturbative methods for tuning, if not

explicitly calculating, the short-distance physics. For example, heavy-quark expansions of a

hadron's kinetic mass, chromomagnetic mass, etc., would be useful, because with them one

could removeHQET scheme dependence. Other possibilities might mimic strategies invented

for light quarks, such as imposing|at �nite lattice spacing|identities of the continuum

limit. For heavy quarks, reparametrization invariance [17], which is closely related to Lorentz

invariance and heavy-quark symmetry, may be helpful.

The heavy-quark expansions in this paper are just the beginning. A wide variety of phys-

ically interesting observables have been studied with the usual HQET, and matrix elements

of the in�nite-mass limit are almost always needed. One can re-analyze each observable

with the modi�ed coe�cients appropriate to the HQET description of lattice gauge theory,

to �nd out how a direct lattice calculation compares to the continuum. Furthermore, it

might be possible to extract parameters such as �� and �1 by calculating the short-distance

coe�cients (in a suitable scheme) and �tting lattice data. The idea is similar to a pro-

posal [48] for extracting kaon matrix elements from current-current correlation functions

hJ(x)J(0)i. (A signi�cant di�erence is that here the ratio mQa of short distances is treated

exactly, whereas in Ref. [48] the analogous ratio a=x is presumed small.) Determinations

of �� and �1 are intriguing, because they also appear in heavy-quark expansions of inclusive

processes [49,28,24].
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APPENDIX A: TRACES FOR SEMI-LEPTONIC FORM FACTORS

This appendix gives the traces needed to express the semi-leptonic form factors, at zero

recoil. Matrix elements with v0 = v are considered �rst, in Appendix A1. They enter

into h+(1), h1(1), and hA1
(1). To extract h�(1) one must take v

0 di�erent from v, focus on

terms multiplying 1
2
(v0 � v)�, and then set w = 1; cf. Appendix A2.

1. At zero recoil

The traces needed to express matrix elements used to obtain h+(1), h1(1), and hA1
(1)

are worked out here. One �nds no contribution of the types hj(1)i and hj(1)L(1)i when w = 1.

a. Contributions from hj(0)i

At leading order in the heavy-quark expansion, all matrix elements are written

hcv0J 0j�cv0�bvjbvJi = � trf �MJ 0�MJg�(w) (A1)

where w = �v0 � v. The spin dependence factors completely; there is only one function �(w)

to parametrize the light degrees of freedom. At zero recoil the current iv��cvbv is the Noether

current of heavy-quark avor symmetry. The associated charge changes nothing but the

heavy-quark avor, namely

Z
d3yhcvJ jiv0�cvbv(y) = hbvJ j; (A2)

and hence �(1) = 1. Fortunately, this conclusion does not depend on the conservation of

the current in the underlying theory, because for lattice QCD one usually computes the

transition with a current that is not conserved. (That is why ZV is written explicitly.) The

violation of current conservation is a short-distance e�ect, however, so it can appear only in

the short-distance coe�cients.

The matrix elements of interest are

hcv00j�cv0i�bvjbv0i = 1
2
(v0 + v)��(w); (A3)

hcv01j�cv0i�bvjbv1i = 1
2
(v0 + v)��0�� �(w); (A4)

hcv01j�cv0i�5bvjbv0i = 1
2
[(1 + w)i�0

�
+ i�0 � vv0�]�(w): (A5)

hcv00j�cv0i�5bvjbv1i = �1
2
[(1 + w)i�� + i��v0 v�]�(w): (A6)

In Eqs. (A5) and (A6) note that �0 � v = 0 and � � v0 = 0 at zero recoil.

The Isgur-Wise function �(w) is ubiquitous, reappearing, for example, in h�(w), which

is considered in the next section. Here we are concerned with v0 = v, and then

hcvJ 0j�cvi��bvjbvJi = !��(1) = !�; (A7)

where �� = � or �5 and !
� = v�, v��0��, i�0�, or �i��, as the case may be.
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b. Contributions from hj(0)L(1)i

The dimension-�ve interactions in the HQET Lagrangian lead to time-ordered products

of j(0) with O2 and OB. For unequal velocities the matrix elements are parametrized by

three functions

Z 0

�T
d4x hcv0J 0j�cv0�bv(0)Ob

2(x)jbvJi? = � trf �MJ 0�MJgA1(w); (A8)

Z 0

�T
d4x hcv0J 0j�cv0�bv(0)Ob

B(x)jbvJi? = � trf �MJ 0�s
��MJA��(v; v

0)g; (A9)

where, like the chromomagnetic �eld B��, the tensor A��(v; v
0) is anti-symmetric and

v�A��(v; v
0) = 0. A general decomposition satisfying these constraints is

A��(v; v
0) = (�i��)��A3(w) + (i?�v

0

?� � iv0
?�?�)A2(w): (A10)

The same functions appear for insertions of Oc
2 and Oc

B.

One can work out the traces to see how A1(w) and A3(w) contribute to h+(w), h1(w), and

hA1
(w). [A2(w) contributes to h�(w).] We are, however, mainly interested in the zero-recoil

point, w = 1. Then the currents become Noether currents, and there are further constraints.

With one insertion the starred time-ordered product is identical to the connected one:

hcvJ 0j�cv�bv(0)Ob
X(x)jbvJi? = hcvJ 0j�cv�bv(0)Ob

X(x)jbvJic =
hcvJ 0j�cv�bv(0)Ob

X(x)jbvJi � hcvJ 0j�cv�bv(0)jbvJi( v0 )�1hbvJ jOb
X(x)jbvJi; (A11)

for x0 < 0, as in Eq. (A8). By translation invariance the left-hand side of Eq. (A8)

Z
d4x hcvJ 0jT �cv�bv(y)Ob

X(x)jbvJi? = i

Z
dx0 d3y hcvJ 0jT �cv�bv(y)Ob

X(x)jbvJi?: (A12)

Taking � = iv0 and using Eq. (A2) one sees that the right-hand side of Eq. (A11) vanishes

identically. Thus,

Z
d4y hcvJ 0jT �cv�bv(0)O2(y)jbvJi? = 0; (A13)Z
d4y hcvJ 0jT �cv�bv(0)OB(y)jbvJi? = 0; (A14)

namely A1(1) = 0 and A3(1) = 0.

These results are properties of heavy-quark symmetry and not of the underlying theory.

Usually it is argued that A1(1) = A3(1) = 0 as a consequence of current conservation

in QCD. This line of argument would not have been enough for our purposes, because for

most choices of V
�
lat current conservation fails. Fortunately, the foregoing argument does

not rely on the underlying theory; indeed, it is equivalent to the derivation in Rayleigh-

Schr�odinger perturbation theory of the Ademollo-Gatto theorem.
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c. Contributions from hj(0)L(2)i

By the same argument leading to Eqs. (A13) and (A14)

Z
d4y hcvJ 0jT �cv�bv(0)OD(y)jbvJi? = 0; (A15)Z
d4y hcvJ 0jT �cv�bv(0)OE(y)jbvJi? = 0: (A16)

The same holds for insertions of the four-quark operators omitted from Eq. (3.17). Again,

this is a property of heavy-quark symmetry and not of the underlying theory.

References [33,34] choose a basis with the operator

QD = 2�hvD
�
?
(�iv � D)D?�hv; (A17)

and a similar, spin-dependent operator QE, instead of OD and OE. They are related by

QD = OD + �hv
 

D2
?
(�iv � D)hv + �hv(iv �

 

D)D2
?
hv; (A18)

up to total derivatives, and similarly for QE. The additional terms, which super�cially

vanish by the equations of motion, generate contact terms. Thus,

Z
d4y hcvJ 0jT �cv�bv(0)Qb

D(y)jbvJi? = hcvJ 0j�cv�D2
?
bvjbvJi = � trf �MJ 0�MJg�1; (A19)Z

d4y hcvJ 0jT �cv�bv(0)Qb
E(y)jbvJi? = hcvJ 0j�cv�BbvjbvJi = � trf �MJ 0�s

��MJi���g�2; (A20)

where B = s��B��, and �1 and �2 are the same constants (including any light-sector cut-

o� e�ects) as in Eqs. (6.5) and (6.6). The left-hand sides of Eqs. (A19) and (A20) were

parametrized, respectively, with 2B1(1) and 2B3(1) in Ref. [33] and with 2�1 and 2�3 in

Ref. [34], but the identi�cation with �1 and �2 was not made.

In the basis employing OD and OE, the counterpart of these contact terms are the

contributions �cv0�D
2
?
bv and �cv0�Bbv to the currents, cf. Eqs. (7.16) and (7.17). In the Q-

basis these currents have coe�cients (8m2
D2
?

)�1 � (8m2
D)
�1 and (8m2

sB)
�1 � (8m2

E)
�1.

d. Contributions from hj(2)i

There are two kinds of of second-order corrections: those which can be associated with

a single leg and those which involve cross-talk between the legs. At zero recoil all can be

expressed through the parameters �1 and �2, namely

hcvJ 0j�cv�D�D�bvjbvJi = � tr
n
�MJ 0�MJ

h
1
3
�1�

�� + 1
2
�2i�

��
io
: (A21)

By taking � to be the unit matrix or s�� and contracting indices, it is easy to trace back to

the de�nitions (6.5) and (6.6). By dimensional analysis, these are the only corrections that

can arise, even beyond tree level.

The required matrix elements are
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hcvJ 0j�cvi��D2
?
bvjbvJi = hcvJ 0j�cv

 

D2
?
i��bvjbvJi = �1!�; (A22)

hcvJ 0j�cvi��BbvjbvJi = dJ�2!�; (A23)

hcvJ 0j�cvBi��bvjbvJi = dJ 0�2!�: (A24)

At zero recoil hcvJ 0j�cv
 

D��D�bvjbvJi = �hcvJ 0j�cv�D�D�bvjbvJi, so V (1;1) and A(1;1) have

matrix elements

hcvJ j�cv
 

=D?i�=D?bvjbvJi = (�1 + dJ�2)!� (A25)

hcv1j�cv
 

=D?i�5=D?bvjbv0i = hcv0j�cv
 

=D?i�5=D?bvjbv1i
= �1

3
(�1 + 3�2)!� (A26)

Contributions with �1 (�2) are spin-independent (spin-dependent).

e. Contributions from hL(1)j(0)L(1)i

Several matrix elements are introduced for double insertions of L(1). In the following

the short-distance coe�cients are stripped o�, leading to insertions of
R
d4zOh

X(z), where

X 2 f2; Bg and h labels the heavy avor. When the operator comes from the numerator

of Eq. (5.4) the time variable is integrated for h = b over the interval (�T; 0] and for h = c

over [0; T ); when the operator comes from the denominator the time variable is integrated

over the interval (�T; T ). After generating all terms the limit T !1(1� i0+) is taken.

When two interactions occur on the incoming line

1
2

Z
d4x d4y hcvJ 0jT �cvi��bv(0)Ob

2(x)Ob
2(y)jbvJi? = !�A (A27)Z

d4x d4y hcvJ 0jT �cvi��bv(0)Ob
2(x)Ob

B(y)jbvJi? = !�dJB (A28)

1
2

Z
d4x d4y hcvJ 0jT �cvi��bv(0)Ob

B(x)Ob
B(y)jbvJi? = !�(C1 + dJC3) (A29)

and, similarly, when two interactions occur on the outgoing line

1
2

Z
d4x d4y hcvJ 0jT Oc

2(x)Oc
2(y)�cvi��bv(0)jbvJi? = !�A (A30)Z

d4x d4y hcvJ 0jT Oc
2(x)Oc

B(y)�cvi��bv(0)jbvJi? = !�dJ 0B (A31)

1
2

Z
d4x d4y hcvJ 0jT Oc

B(x)Oc
B(y)�cvi��bv(0)jbvJi? = !�(C1 + dJ 0C3) (A32)

where �� = � or �5, as the case may be. When each line has one interactionZ
d4x d4y hcvJ 0jT Oc

2(x)�cvi��bv(0)Ob
2(y)jbvJi? = !�D (A33)Z

d4x d4y hcvJ 0jT Oc
2(x)�cvi��bv(0)Ob

B(y)jbvJi? = !�dJE (A34)Z
d4x d4y hcvJ 0jT Oc

B(x)�cvi��bv(0)Ob
2(y)jbvJi? = !�dJ 0E (A35)
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again where �� = � or �5, as the case may be, and

Z
d4x d4y hcvJ jT Oc

B(x)�cvi�bv(0)Ob
B(y)jbvJi? = !�(R1 + dJR2); (A36)Z

d4x d4y hcv1jT Oc
B(x)�cvi�5b(0)Ob

B(y)jbv0i? = �1
3
!�(R1 + 3R2): (A37)

Here we have used the notation of Ref. [34].

There are relations between these parameters, which follow solely from heavy-quark

symmetry and properties of perturbation theory. Upon expanding Eq. (5.4) and sorting

terms with like coe�cients one �ndsZ
d4x d4y hcvJ 0jT j(0)Ob

X(x)Ob
Y (y)jbvJi? =Z

d4x d4y hcvJ 0jT j(0)Ob
X(x)Ob

Y (y)jbvJic � hcvJ 0jj(0)jbvJiZ?
XY ; (A38)

andZ
d4x d4y hcvJ 0jOc

X(x)j(0)Ob
Y (y)jbvJi? =

Z
d4x d4y hcvJ 0jOc

X(x)j(0)Ob
Y (y)jbvJic; (A39)

with limits of integration on the time coordinates as given above. On the right-hand side of

Eq. (A38) the second term is the contribution from state renormalization:

Z?
XY =

1

v0

Z T

0
d4x

Z 0

�T
d4y hbvJ jOb

X(x)Ob
Y (y)jbvJic; (A40)

which is avor independent. In Eq. (A38) the operator j is left-most for all time orderings.

When j is a Noether charge one can apply Eq. (A12) to show that the connected term

vanishes, leaving only the term from state renormalization. In Eq. (A39) the operator j is

in the middle for all time orderings. When j is a Noether charge, however, the right-hand

side can be reduced to the same quantity as in the state renormalization. Inserting complete

sets of states on both sides of j, and noting that Eq. (A12) applies equally well to excited

states, one �nds

Z
d4x d4y hcvJ 0jOc

X(x)j(0)Ob
Y (y)jbvJi? = hcvJ 0jj(0)jbvJiZ?

XY ; (A41)

making use of the avor independence of Z?
XY . Apart from a sign, therefore, the two kinds

of ?-products are the same, and

A = �1
2
D; (A42)

B = �E; (A43)

C1 = �1
2
R1; (A44)

C3 = �1
2
R2: (A45)

These identities leave only four parameters. To my knowledge they have not been derived be-

fore. Since they do not depend on the underlying theory, they hold also for continuum QCD.
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2. Near zero recoil: h�(1)

At zero recoil several matrix elements vanish, but they are precisely of the type leading

to h�(w) in Eq. (7.2). To extract h�(1) one must take v0 6= v while evaluating matrix

elements, read o� the form factor, and then set w to 1. This subsection works out the

relevant matrix elements, those of the dimension-four currents, the dimension-�ve currents

�cv0i�i=Ebv and �cv0i=E
0
i�bv, and time-ordered products of dimension-four currents with L(1).

a. Contributions from hj(1)i

For the matrix elements hcv00j�cv0i�=D?bvjbv0i and hcv00j�cv0
 

=D?0i�bvjbv0i one starts with
the matrix element

hcv0J 0j�cv0�D�bvjbvJi = � trf �MJ 0�MJi�
�(v; v0)g (A46)

where �� parametrizes the light degrees of freedom. The equation of motion (�iv � D)bv = 0

implies that v��
�(v; v0) = 0, leaving two independent form factors

��(v; v0) = v0�
?
�2(w)� i�

?
�3(w): (A47)

A further constraint on ��(v; v0) comes from the \integration-by-parts" identity

hcv0J 0j�cv0
 

D��bvjbvJi+ hcv0J 0j�cv0�D�bvjbvJi = �i��(v0 � v)�hcv0J 0j�cv0�bvjbvJi; (A48)

where Dbv = (D � im1bv)bv and �cv0
 

D = �cv0(
 

D + im1cv
0). The �rst matrix element

hcv0J 0j�cv0
 

D��bvjbvJi = � trf �MJ 0�MJ [�i��(v0; v)]g; (A49)

where ��(v0; v) = 4[��(v0; v)]y4. Substituting traces for matrix elements in Eq. (A48) yields

the relation

(w + 1)�2(w) + �3(w) = ����(w); (A50)

which can be used to eliminate �2(w). In Eq. (A50) the constant �� and the function �(w)

are the same|including lattice artifacts of the light degrees of freedom|as in Eqs. (6.3)

and (A1), respectively. Evaluating the traces of interest and using Eq. (A50) one �nds

hcv00j�cv0i�=D?bvjbv0i = hcv00j�cv0
 

=D?0i�bvjbv0i
= �1

2
(v0 � v)�[2�3(w) � ���(w)]; (A51)

There is no contribution to h+(w), and the vector-to-vector matrix elements make no con-

tribution to h1(w), just to other form factors that are not considered in this paper. An

equivalent analysis appears in Ref. [33]. The only signi�cant addition is to extend to lattice

QCD the identi�cation of ���(w) in Eq. (A50) with the quantities in Eqs. (6.3) and (A1).
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b. Contributions from hj(2)i

To obtain all of the second-order corrections to the current one can start with

hcv0J 0j�cv0
 

D��D�bvjbvJi = � trf �MJ 0�MJ [����(v; v0)]g: (A52)

The equations of motion (�iv � D)bv = 0 and �cv0(iv
0 �
 

D) = 0 imply that ���(v; v0)v� = 0

and v0��
��(v; v0) = 0, and symmetry under exchanging �nal and initial states implies that

���(v0; v) = ���(v; v0), leaving four independent form factors,

���(v; v0) = �0
�

 [
1
3
g��1(w) +

1
2
i���2(w)]�

�
� + v�

?0
v0
�

?
�3(w) + [i�

?0
v0
�

?
+ v�

?0
i�
?
]�4(w): (A53)

The pre-factors for the �rst two form factors are chosen so that �1(1) = �1 and �2(1) = �2
are the constants in Eq. (A21).

The matrix elements needed for h�(w) are hcv00j�cv0i�i=Ebvjbv0i and hcv00j�cv0i=E0i�bvjbv0i.
They are related to Eq. (A52) by the identity

hcv0J 0j�cv0�D�D�bvjbvJi = �i��(v0 � v)�hcv0J 0j�cv0�D�bvjbvJi � hcv0J 0j�cv0
 

D��D�bvjbvJi
(A54)

and the de�nitions i=E = �iv�[D�;D�]
�
?
, i=E

0
= �iv0�[D�;D�]

�
?0
. Evaluating the traces one

�nds

hcv00j�cv0i�i=Ebvjbv0i = hcv00j�cv0i=E 0i�bvjbv0i
= �1

2
(v0 � v)�

n
1
2
(w + 1)�(w) + (w � 1)��

h
2�3(w)� ���(w)

io
(A55)

where

�(w) = 2
3
w�1(w) + (3� w)�2(w) � 2(w2 � 1)�3(w) + 8(w � 1)�4(w): (A56)

At w = 1, �(1) = 2
3
(�1 + 3�2).

c. Contributions from hj(1)L(1)i

The time-ordered products of interest are
R
d4y hcv0J 0jT �cv0�=D?bv(x)O

f
X(y)jbvJi? andR

d4y hcv0J 0jT �cv0
 

=D?0�bv(x)Of
X(y)jbvJi?, where X 2 f2; Bg and f 2 fc; bg. As before it

is helpful to consider matrix elements with =D
?
replaced with D and derive constraints from

the equations of motion and from \integrating by parts." This is a bit trickier now, with

derivatives acting under the time-ordered product.

The equations of motion imply the identitiesZ
d4y hcv0J 0jT �cv0�(�iv � D)bv(x)Ob

2(y)jbvJi? = hcv0J 0j�cv0�D2
?
bv(x)jbvJi; (A57)Z

d4y hcv0J 0jT �cv0�(�iv � D)bv(x)Ob
B(y)jbvJi? = hcv0J 0j�cv0�Bbv(x)jbvJi; (A58)Z

d4y hcv0J 0jT Oc
2(y)�cv0(iv

0 �
 

D)�bv(x)jbvJi? = hcv0J 0j�cv0
 

D2
?0
�bv(x)jbvJi; (A59)Z

d4y hcv0J 0jT Oc
B(y)�cv0(iv

0 �
 

D)�bv(x)jbvJi? = hcv0J 0j�cv0B0�bv(x)jbvJi: (A60)
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The contact terms on the right-hand side were omitted from Eqs. (4.27) of Ref. [33] but do

appear, for example, in Eq. (A21) of Ref. [49]. They arise from a careful de�nition of the

T -product for operators containing time derivatives. A helpful mnemonic for checking them

is to note that

(�iv � D)T bv(x)bv(y) = �(4)(x� y); (A61)

T cv0(y)�cv0(x)(iv
0 �
 

D) = �(4)(y � x): (A62)

Further identities come from taking the derivative @�hDv0 j�cv0�bvjBvi between fully dressed

states, and generating the expansion. This leads to

Z
d4y hcv0J 0jT [�cv0�D�bv(x) + �cv0

 

D��bv(x)]Ob
2(y)jbvJi? = (A63)

�i��(v0 � v)�
Z
d4y hcv0J 0jT �cv0�bv(x)Ob

2(y)jbvJi? � i�1v
�hcv0J 0j�cv0�bv(x)jbvJi;Z

d4y hcv0J 0jT [�cv0�D�bv(x) + �cv0
 

D��bv(x)]Ob
B(y)jbvJi? = (A64)

�i��(v0 � v)�
Z
d4y hcv0J 0jT �cv0�bv(x)Ob

B(y)jbvJi? � idJ�2v
�hcv0J 0j�cv0�bv(x)jbvJi;Z

d4y hcv0J 0jT Oc
2(y)[�cv0�D�bv(x) + �cv0

 

D��bv(x)]jbvJi? = (A65)

�i��(v0 � v)�
Z
d4y hcv0J 0jT Oc

2(y)�cv0�bv(x)jbvJi? + i�1v
0�hcv0J 0j�cv0�bv(x)jbvJi;Z

d4y hcv0J 0jT Oc
B(y)[�cv0�D�bv(x) + �cv0

 

D��bv(x)]jbvJi? = (A66)

�i��(v0 � v)�
Z
d4y hcv0J 0jT Oc

B(y)�cv0�bv(x)jbvJi? + idJ 0�2v
0�hcv0J 0j�cv0�bv(x)jbvJi:

These identities do not agree with analogous ones from combining Eqs. (C4) and (C5)

of Ref. [33]. Remarkably, Eq. (C5) of Ref. [33] contains the contact terms omitted from

Eq. (4.27) of Ref. [33].

Once again the time-ordered products are parametrized by form factors. Consider �rst

the case with the kinetic operator. It is enough to present the details for Ob
2. One may write

Z
d4y hcv0J 0jT �cv0�D�bvOb

2(y)jbvJi? = � trf �MJ 0�MJ i�
�(v; v0)g; (A67)Z

d4y hcv0J 0jT �cv0
 

D��bvOb
2(y)jbvJi? = � trf �MJ 0�MJ [�iF �(v; v0)]g: (A68)

In the �rst case, the equation of motion (A57) implies v � � = �0, where

�0(w) =
1
3
(2 + w2)�1(w)� (w � 1)fw[1

2
�2(w) + (w + 1)�3(w)� 2�4(w)] + ��2�(w)g (A69)

is obtained from Eqs. (A53) and (A54). Thus, �� has a decomposition

��(v; v0) = �v��0(w) + v0�
?
�2(w)� i�

?
�3(w) (A70)

similar to �� but with ��0(w) multiplying v�. On the other hand, the equation of motion

still implies v0 � F = 0, so F � has the decomposition
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F �(v; v0) = v�
?0
F1(w)� i�

?0
F3(w): (A71)

similar to ��(v0; v). The form factors �2, F1, and F3 can be eliminated, because the iden-

tity (A63) implies

(w + 1)�2 + �3 = �w ~�0 � ��A1; (A72)

(w + 1)F1 + F3 = ~�0 � ��A1; (A73)

F3 = �3; (A74)

where

~�0(w) =
�0(w)� �1�(w)

w � 1
: (A75)

At zero recoil the new constants that can arise are �3(1) and, denoting di�erentiation with

respect to w by a dot, ~�0(1) = _�0(1)� �1 _�(1). (Recall that A1(1) = 0, as a consequence of

heavy-quark avor symmetry.)

Evaluating the traces for h�(w), one �ndsZ
d4y hcv00jT �cv0i

�=D
?
bv(x)Ob

2(y)jbv0i? =
Z
d4y hcv00jT �cv0Oc

2(y)
 

=D?0i
�bv(x)jbv0i?

= �1
2
(v0 � v)�[2�3(w)� ��A1(w)� w ~�0(w)]; (A76)Z

d4y hcv00jT �cv0
 

=D?0i
�bv(x)Ob

2(y)jbv0i? =
Z
d4y hcv00jT �cv0Oc

2(y)i
�=D
?
bv(x)jbv0i?

= �1
2
(v0 � v)�[2�3(w)� ��A1(w) + ~�0(w)]: (A77)

Matrix elements of this kind make no contribution to h+(w), h1(w), or hA1
(w).

Finally there are the time-ordered products with the chromomagnetic energy. It is enough

to show the details for Ob
B. When the derivative acts on bv,Z

d4y hcv0J 0jT �cv0�D�bv(x)Ob
B(y)jbvJi? = � trf �MJ 0�s

��MJi�
�
��(v; v

0)g; (A78)

and when the derivative acts on �cv0 ,Z
d4y hcv0J 0jT �cv0

 

D��bv(x)Ob
B(y)jbvJi? = � trf �MJ 0�s

��MJ [�iF �
��(v; v

0)]g: (A79)

The tensors ��
�� and F

�
�� inherit properties from the chromomagnetic �eld B��: they are

antisymmetric on the lower indices, and ��
��v

� = F �
��v

� = 0. From the equations of

motion v0�F
�
�� = 0 and v��

�
�� = ���, where

���(v; v
0) = ���[�

��(v; v0)� ���(v; v0)]��� + ��[v0
?���(v; v

0)� v0
?���(v; v

0)]: (A80)

Substituting Eq. (A53) into Eq. (A80)

���(v; v
0) = (�i��)���3(w)� (i?�v

0

?� � iv0
?�?�)�2(w); (A81)

where �3(w) = �2(w) and �2(w) = �1
2
�2(w) � (w + 1)�4(w) � ���3(w). The constraints

on ��
�� and F �

�� lead to the decompositions
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��
��(v; v

0) = (�i��)��
h
�v��3 + v

0�
?
�8 � i

�
?
�9

i
� (i?�v

0

?� � v0
?�i?�)

h
�v��2 + v0�

?
�5 + i�

?
�6

i
(A82)

+ (���v
0

?� � �
�
�v
0

?�)�10 + (���i?� � �
�
�i?�)�11;

and

F �
��(v; v

0) = (�i��)�� [v
�
?0
F7 � i

�
?0
F9]

� (i?�v
0

?� � v0
?�i?�) [v

�
?0
F4 + i

�
?0
F6] (A83)

+ �0�� (�
�
�v
0

?� � ���v
0

?�)F10 + �0�� (�
�
�i?� � ���i?�)F11:

The subscripts are chosen as in Ref. [33].

The identity (A64) can be applied to eliminate �5, �8, and all F s:

Fk = �k; k 2 f6; 9; 10; 11g; (A84)

(w2 � 1)�5 = �w�2 � (w + 1)�6 � �11 + (w � 1)��A2; (A85)

(w2 � 1)F4 = �2 + (w + 1)�6 + w�11 + (w � 1)��A2; (A86)

(w + 1)�8 = �w ~�3 � �9 � ��A3; (A87)

(w + 1)F7 = ~�3 � �9 � ��A3; (A88)

where

~�3(w) =
�3(w)� �2�(w)

w � 1
: (A89)

Each of Eqs. (A85) and (A86) implies 2�6(1) + �11(1) = ��2(1).
Evaluating the traces for h�(w), one �ndsZ

d4y hcv00jT �cv0i
�=D
?
bv(x)Ob

B(y)jbv0i? =
Z
d4y hcv00jT �cv0Oc

B(y)
 

=D?0i
�bv(x)jbv0i?

= �1
2
(v0 � v)�[2��(w)� w ~��(w)]; (A90)Z

d4y hcv00jT �cv0
 

=D?0i
�bv(x)Ob

B(y)jbv0i? =
Z
d4y hcv00jT �cv0Oc

B(y)i
�=D
?
bv(x)jbv0i?

= �1
2
(v0 � v)�[2��(w) + ~��(w)]; (A91)

where

�� = 3�9 + (w + 1)(2�6 + �10)� 2�11 � 3
2
��A3 � (w � 1)��A2: (A92)

~�� = 3~�3 � 2�2 (A93)

At zero recoil the new constants that can arise are �6(1), �9(1), �10(1), and ~�3(1). (Note

that A2(1) drops out, and recall that A3(1) = 0 as a consequence of heavy-quark avor

symmetry.) As in Eqs. (A76) and (A77), matrix elements of this kind make no contribution

to h+(w), h1(w), or hA1
(w). In h�(1) they reduce to two constants

��(1) = 3�9(1) + 8�6(1) + 2�10(1) + 2�2(1); (A94)

~��(1) = 3[ _�3(1)� �2 _�(1)]� 2�2(1); (A95)

which are needed in Eq. (7.47).
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